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Periodically stimulated remodelling of a muscle fibre:
perturbation analysis of a simple system of first-order ODEs

J. Rosenberga,∗, M. Byrtusa

aFaculty of Applied Sciences, UWB in Pilsen, Univerzitnı́ 22, 306 14 Plzeň, Czech Republic
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Abstract

The paper deals with the dynamical analysis of the system of first-order ODE’s describing the isometric stimulation
of the muscle fibre. This system is considered to be a non-autonomous one having the periodical excitation. For
the analysis of dynamical behaviour the system the multiple scale method (MSM) is employed. The main goal
of this contribution is to show the application of MSM to the non-autonomous dynamical system using the first
order approximation of the solution. The existence of the degenerated Hopf’s bifurcation of the gained solution is
presented.
c© 2012 University of West Bohemia. All rights reserved.
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1. Introduction

The paper follows the authors previous papers [6] dealing with the application of the non-
irreversible thermodynamics and the growth and remodelling theory (GRT) [1] to the muscle
fibre modelling. The approach allows taking into account also the change of the muscle fibre
stiffness during time. The effect change of the muscle fibre stiffness during time was experimen-
tally approved and modelled [2]. The same approach can be used to model the piezo-electric
stack time evolution. The final simplified dimensionless formulation has the form of the dynam-
ical system with two degrees of freedom. The numerical experiments have shown the interesting
behaviour of this system, e.g. the existence of bifurcations. These effects correspond to some
medical recognition like vasomotion or myogenic response. This contribution is devoted to the
analysis of these properties using the multi-scale method (MSM) [3] which is kind of the per-
turbation method. Here, MSM is used to model the behaviour of mentioned system close to the
Hopf’s bifurcation point leading to the periodical or even chaotic motion.

2. Problem setting

In GRT the starting point is the initial configuration B0 that “growths” and “remodels” , i.e. it
changes its volume (“growth”), anisotropy (“geometrical remodelling”) or material parameters
(“material remodelling”). This process is expressed by the tensor P (further growth tensor)
firstly that relates the initial configuration to the relaxed one Br with zero inner stress to the
real configuration Bt where the inner stress invoked by growth, geometrical remodelling and
external loading can already exists. It is stated by the deformation tensor F (see Fig. 1).
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Fig. 1. Initial, relaxed and current configurations

The deformation gradient between the configurations B0 a Bt is

∇p = FP. (1)

Let the 1D continuum have the initial length l0. Its actual length after growth, remodelling and
loading will be l. The relaxed length (it means after growth and remodelling) is lr. For the
corresponding deformation gradients we can write

P =
lr
l0
, F =

l

lr
, ∇p =

l

l0
. (2)

In the isometric case, the actual length is constant, i.e. it holds l = const.

In [6], the set of the ODE’s describing in dimensionless form the behavior of the muscle fiber
during the isometric excitation was derived according the work of DiCarlo and Quiligotti [1]

ẋ = −x
{
C +

y

λ
e

λ
2
(x−1)2 [λx(x− 1)− 1] +

y

λ

}
, (3)

ẏ = sgnm

[
−1

λ

(
e

λ
2
(x−1)2 − 1

)]
. (4)

The meaning of used variables is following

x =
1

l′r
, y = k′, k′ = k

√
|m|
g

, l′r =
lr
l
=

1

F
, t′ =

t√
g|m|

, (5)

where l, lr are the lengths of the continuum in actual and relaxed configurations and k ′ is the
dimensionless stiffness parameter. The parameters C,D, λ,m, g are the parameters.

Eqs. (3) and (4) are based on the Fung’s form of the free energy

ψ =
k

λ

(
e

λ
2
(F−1)2 − 1

)
, (6)

where k is the stiffness of the muscle fiber.
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Setting λ → 0 we obtain more simple form

ψ =
1

2
k(F − 1)2, (7)

where C is the control parameter depending on the calcium concentration inside the muscle
cell. Without using the complex model of the calcium concentration evolution we will suppose,
that C is either constant or a periodical function of time and can be approximated in this form

C → C +D sinωt. (8)

Using (7) and (8) we obtain the more simple non-autonomous system

ẋ = −x
[
C +D sinωt+

y

2
(x2 − 1)

]
, (9)

ẏ = sgnm

[
r − 1

2
(x− 1)2

]
. (10)

According to some numerical experiments we can see that both models have qualitatively the
same properties. Therefore, we will further focus our attention on the simpler one (9) and (10).

3. Dynamical analysis for D = 0

This analysis was published in [5]. The existence of the degenerated Hopf’s bifurcation was
proved for C = 0 and sgnm = −1. The situation is shown on Fig. 2 in the right corner.
Depending on the sign of C there exists one stable and one unstable equilibrium point and a
stable limit cycle around these points for C = 0.

4. Dynamical analysis using multiple scale method

We start with the dynamical system defined by the Eqs. (9) and (10). The steady solution of
this dynamical system is

x0 = 1±Θ, Θ =
√
2r,

y0 = 0, (11)

C0 = D0 = 0.

Now we follow the procedure suggested by [4], but generalized for non-autonomous systems.
Let us consider the solution

x = x0 + εξ,

y = y0 + εη,

C +D cosωt = C0 +D0 cosωt+ ε2C2 + ε3D3 cosωt. (12)

With this very specific approximation we restrict our analysis on the case of small C and
even smaller D. We must not forget it when we will do some numerical experiments in order to
validate this analysis.
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Fig. 2. Stability domains in the parameter space

We put (12) into (11) and while for x0 and y0 the RHSs are zero and neglecting the terms of
order 4 and higher, we obtain the following non-autonomous dynamical system

ξ̇ = −1

2
x0

(
x2
0 − 1

)
η − ε

1

2

(
3x2

0 − 1
)
ξη − ε2ξC2 −

εx0C2 − ε2
3

2
x0ξ

2η − 1

2
ε3ηξ3 −

ε3ξD3 cosωt− ε2x0D3 cosωt, (13)

η̇ = (x0 − 1)ξ +
1

2
εξ2.

This system will be solved using multiple-scale method. Let us assume

ξ = ξ1 + εξ2 + ε2ξ3,

η = η1 + εη2 + ε2η3, (14)

where ξi(T0, T2), ηi(T0, T2); i = 1, 2, 3 and T0 = t, T2 = ε2t. Limitation of our analysis will be
the restriction only on the first approximation of the solution (x = x0 + εξ1, y = y0 + εη1).

Inserting this approximation into (13) we obtain (again by neglecting terms with the order
higher than 3)
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∂ξ1
∂T0

+ ε2
∂ξ1
∂T2

+ ε
∂ξ2
∂T0

+ ε3
∂ξ2
∂T2

+ ε2
∂ξ3
∂T0

+ ε4
∂ξ3
∂T2

=

= −x0

2

(
x2
0 − 1

) (
η1 + εη2 + ε2η3

)
−

1

2

(
3x2

0 − 1
) (

εξ1η1 + ε2η1ξ2 + ε3η1ξ3 + ε2η2ξ1 + ε3η2ξ2 + ε3η3ξ1
)
−

εx0C2 −
3

2
x0

(
ε2η1ξ

2
1 + 2ε3η1ξ1ξ2 + ε3η2ξ

2
1

)
− C2

(
ε2ξ1 + ε3ξ2

)
−

ε2x0D3 cosωT0 − ε3ξ1D3 cosωt, (15)
∂η1
∂T0

+ ε2
∂η1
∂T2

+ ε
∂η2
∂T0

+ ε3
∂η2
∂T2

+ ε2
∂η3
∂T0

+ ε4
∂η3
∂T2

=

= (x0 − 1)
(
ξ1 + εξ2 + ε2ξ3

)
+

1

2

(
εξ21 + ε3ξ22 + 2ε2ξ1ξ2 + 2ε3ξ1ξ3

)
. (16)

If we compare the terms with the same order of ε, we obtain the following systems of
equations

∂ξ1
∂T0

= −1

2
x0

(
x2
0 − 1

)
η1,

ε0:
∂η1
∂T0

= (x0 − 1)ξ1, (17)

∂ξ2
∂T0

= −1

2
x0

(
x2
0 − 1

)
η2 −

1

2

(
3x2

0 − 1
)
ξ1η1 − x0C2,

ε1:
∂η2
∂T0

= (x0 − 1)ξ2 +
1

2
ξ21, (18)

∂ξ1
∂T2

+
∂ξ3
∂T0

= −1

2
x0

(
x2
0 − 1

)
η3 −

1

2

(
3x2

0 − 1
)
(η1ξ2 + η2ξ1)−

3

2
x0η1ξ

2
1 − C2ξ1 − x0D3 cosωT0,

ε2:
∂η1
∂T2

+
∂η3
∂T0

= (x0 − 1)ξ3 + ξ1ξ2. (19)

System (17) can be rewritten into form

∂2ξ1
∂T 2

0

+ Ω2ξ1 = 0,

η1 = − 2

x0 (x
2
0 − 1)

∂ξ1
∂T0

, (20)

where

Ω2 =
1

2
x0

(
x2
0 − 1

)
(x0 − 1). (21)

Solution of Eq. (20) can be written as

ξ1 = A(T2)e
iΩT0 + Ā(T2)e

−iΩT0 ,

η1 = −Φi
(
AeiΩT0 − Āe−iΩT0

)
,

(22)
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where

Φ =
2Ω

x0 (x2
0 − 1)

. (23)

Now we transform the system (18) into the form

∂2ξ2
∂T 2

0

+ Ω2ξ2 = −1

4
x0

(
x2
0 − 1

)
ξ21 −

1

2

(
3x2

0 − 1
) ∂ξ1
∂TO

η1 −
1

2

(
3x2

0 − 1
)
ξ1

∂η1
∂TO

,

η2 = − 2

x0 (x2
0 − 1)

[
∂ξ2
∂TO

+
1

2

(
3x2

0 − 1
)
ξ1η1 + x0C2

]
. (24)

After inserting from (22) we obtain the equation

∂2ξ2
∂T 2

0

+ Ω2ξ2 = −1

2
x0

(
x2
0 − 1

)
AĀ−Q

[
A2ei2ΩT0 + Ā2e−i2ΩT0

]
, (25)

where

Q =
1

4
x0

(
x2
0 − 1

)
+
(
3x2

0 − 1
)
ΦΩ (26)

is constant. Particular solution of this equation with the frequency equal to 2Ω is

ξ2 = − x0

x0 − 1
AĀ+

Q

3Ω2

(
A2ei2ΩT0 + Ā2e−i2ΩT0

)
,

η2 = − 2

x0 (x2
0 − 1)

[
i
2

3

Q

Ω

(
A2ei2ΩT0 − Ā2e−i2ΩT0

)
−

i
1

2

(
3x2

0 − 1
)
Φ
(
A2ei2ΩT0 − Ā2e−i2ΩT0

)
+ x0C2

]
. (27)

The last step is to transform the system of first order ODEs (19) into the second order ODE

∂2ξ3
∂T 2

0

+ Ω2ξ3 = −1

2
x0

(
x2
0 − 1

)
ξ1ξ2 +

1

2
x0

(
x2
0 − 1

) ∂η1
∂T2

− ∂

∂T0

(
∂ξ1
∂T2

)
−

1

2

(
3x2

0 − 1
)(∂η1

∂T0
ξ2 + η1

∂ξ2
∂T0

+
∂η2
∂T0

ξ1 + η2
∂ξ1
∂T0

)
−

3

2
x0

∂η1
∂T0

ξ21 − 3x0η1ξ1
∂ξ1
∂T0

− C2
∂ξ1
∂T0

− x0D3
d

dT0

(cosωT0). (28)

Now we put the previous solutions into this equation. The result is

∂2ξ3
∂T 2

0

+ Ω2ξ3 = −1

2
x0

(
x2
0 − 1

) (
AeiΩT0 + Āe−iΩT0

)
·[

− x0

x0 − 1
AĀ +

Q

3Ω2
(A2ei2ΩT0 + Ā2e−i2ΩT0)

]
−

1

2
x0

(
x2
0 − 1

)
Φi

(
A′eiΩT0 − Ā′e−iΩT0

)
− iΩ

(
A′eiΩT0 − Ā′e−iΩT0

)
−

1

2

(
3x2

0 − 1
)
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ΦΩ
(
AeiΩT0 + Āe−iΩT0

) [
− x0

x0−1
AĀ+ Q

3Ω2

(
A2ei2ΩT0 + Ā2e−i2ΩT0

)]
+

Φ
(
AeiΩT0 − Āe−iΩT0

)
2Q
3Ω

(
A2ei2ΩT0 − Ā2e−i2ΩT0

)
+ . .NST. .−

2

x0(x2
0−1)

(NST + x0C2)iΩ
(
AeiΩT0 − Āe−iΩT0

)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

−

. .NST. .− iC2Ω
(
AeiΩT0 − Āe−iΩT0

)
− x0D3

d

dT0
(cosωT0), (29)

where NST means “non-secular terms“ and A′ designates derivative of A according to T2.
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Further, we will distinguish two cases:

1. Autonomous case – D3 = 0,

2. Non-autonomous case corresponding to soft resonant stimulation – D3 �= 0;
ω = Ω + ε2ν2.

4.1. Autonomous case – D3 = 0

The conditions for secular terms (periodical with the frequency Ω and therefore leading to the
resonance) from (29) is

eiΩT0 :

⎡
⎢⎢⎢⎣

1
2

x2
0(x2

0−1)
x0−1

A2Ā− 1
2
x0 (x

2
0 − 1)ΦiA′ −

iΩA′ + 1
2
(3x2

0 − 1) x0

x0−1
ΦΩA2Ā+

3x2
0−1

(x2
0−1)

ΩiC2A− iC2AΩ

⎤
⎥⎥⎥⎦ = 0, (30)

e−iΩT0 :

⎡
⎢⎢⎢⎣

1
2

x2
0(x2

0−1)
x0−1

Ā2A+ 1
2
x0 (x

2
0 − 1)ΦiĀ′ +

iΩĀ′ + 1
2
(3x2

0 − 1) x0

x0−1
ΦΩĀ2A−

3x2
0−1

(x2
0−1)

ΩiC2Ā− iC2ĀΩ

⎤
⎥⎥⎥⎦ = 0. (31)

It can be shown easily that both conditions are identical and in the next we will work with the
first one. This condition can be simplified into the form

αA2Ā− A′βi− Aγi = 0, (32)

where

α =
x0

2

(
4x2

0 + x0 − 1
)
, β = 2Ω, γ = −C2Ω

2x2
0

x2
0 − 1

, (33)

where α, β and γ are constants. Now we insert

A = aeiφ, Ā = ae−iφ (34)

and comparing the real and imaginary parts after reducing the equation by e−iφ and eiφ (they
have unit absolute value) we obtain the following equations

Re : φ′β + αa2 = 0 ⇒ φ′ = −α
β
a2,

Im : a′β + γa = 0 ⇒ a′ = −γ
β
a.

(35)

Solution for a is
a = const. e−

γ
β
T2 . (36)

Only for γ = 0 ⇒ C2 = 0 it exists a = const. corresponding to the periodical motion. For
C2 �= 0 depending on its sign we can observe either convergence or divergence of the solution.
This result fully corresponds with previous analysis [5] for C = 0 where the Hopf’s degenerated
bifurcation exists. On Figs. 3, 4 and 5 the results of the numerical experiments are shown. The
limit cycle for C = 0 is presented on Fig. 3 and the convergence to the point with the coordinate
x0 = 1 + Θ for C < 0 and divergence from this point and convergence to the point with the
coordinate x0 = 1 + Θ for C > 0 on Figs. 4 and 5.
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Fig. 3. Phase portrait for r = 0.02, x0 = 1 + Θ, y0 = 0.017 7, C = 0, D = 0

Fig. 4. Phase portrait for r = 0.02, x0 = 1 + Θ, y0 = 0.017 7, C = −0.006, D = 0

Fig. 5. Phase portrait for r = 0.02, x0 = 1 + Θ, y0 = 0.017 7, C = 0.006, D = 0

4.2. Non-autonomous case – soft resonant stimulation – D3 �= 0; ω = Ω + ε2ν2

Here, after setting we obtain

ωT0 = ΩT0 + ε2ν2T0 = ΩT0 + ν2T2. (37)
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In this case the Eq. (29) will have the form

∂2ξ3
∂T 2

0

+ Ω2ξ3 = −1

2
x0

(
x2
0 − 1

)
·

(
AeiΩT0 + Āe−iΩT0

) [
− x0

x0 − 1
AĀ+

Q

3Ω2

(
A2ei2ΩT0 + Ā2e−i2ΩT0

)]
−

1

2
x0

(
x2
0 − 1

)
Φi

(
A′eiΩT0 − Ā′e−iΩT0

)
− iΩ

(
A′eiΩT0 − Ā′e−iΩT0

)
−

1

2

(
3x2

0 − 1
)
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ΦΩ
(
AeiΩT0 + Āe−iΩT0

) [
− x0

x0−1
AĀ+ Q

3Ω2

(
A2ei2ΩT0 + Ā2e−i2ΩT0

)]
+

Φ
(
AeiΩT0 − Āe−iΩT0

)
2Q
3Ω

(
A2ei2ΩT0 − Ā2e−i2ΩT0

)
+ . .NST. .−

2

x0(x2
0−1)

(NST + x0C2) iΩ
(
AeiΩT0 − Āe−iΩT0

)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

−

. .NST. .− iC2Ω
(
AeiΩT0 − Āe−iΩT0

)
− 1

2
x0D3Ωi

(
ei(ΩT0+ν2T2) − e−i(ΩT0+ν2T2)

)
. (38)

The condition for the secular terms (30) will have the form

eiΩT0 :

⎡
⎢⎢⎢⎣

1
2

x2
0(x2

0−1)
x0−1

A2Ā− 1
2
x0 (x

2
0 − 1)ΦiA′ −

iΩA′ + 1
2
(3x2

0 − 1) x0

x0−1
ΦΩA2Ā+

3x2
0−1

(x2
0−1)

ΩiC2A− iC2AΩ− 1
2
ix0D3Ωe

iν2T2

⎤
⎥⎥⎥⎦ = 0 (39)

and further
αA2Ā−A′βi−Aγi− iδeiν2T2 = 0, (40)

where

δ =
1

2
x0D3Ω. (41)

After inserting from (34) to (40) we obtain

Re : aφ′β + αa3 + δ sin(ν2T2 − φ) = 0,
Im : a′β + γa + δ cos(ν2T2 − φ) = 0.

(42)

To obtain the autonomous system we provide the substitution

ν2T2 − φ = ψ(T2). (43)

And then
ψ′ = ν2 +

α
β
a2 + δ

aβ
sinψ,

a′ = −γ
β
a− δ

β
cosψ.

(44)

Let the stationary solution of this dynamical system be ã, ψ̃. If we eliminate ψ̃ from the corre-
sponding equations, we obtain the following frequency response equation

ã2
[(
βν2 + αã2

)2
+ γ2

]
= δ2. (45)

Equations in variations of (44) are

η′a = −γ

β
ηa − ã

(
ν2 +

α

β
ã2
)
ηψ,

η′ψ =

[
2
α

β
ã+

1

ã

(
ν2 +

α

β
ã2
)]

ηa −
γ

β
ηψ. (46)

61



J. Rosenberg et al. / Applied and Computational Mechanics 6 (2012) 53–64

The eigenvalues are

λ1,2 = −γ

β
±

√(
γ

β

)2

−
(
ν2 +

α

β
ã2
)(

ν2 + 3
α

β
ã2
)
. (47)

For the stability reason it is necessary that the square root is either zero or pure imaginary one

−
(
ν2 +

α

β
ã2
)(

ν2 + 3
α

β
ã2
)

≤ 0. (48)

If this condition is fulfilled, the system is asymptotically stable for −γ
β

< 0. Putting from (33)
into this condition, we obtain the form

1

2
C2

x2
0

x2
0 − 1

< 0. (49)

For x0 = 1 + Θ, the system is stable if C2 < 0 and for x0 = 1 − Θ it is stable if C2 > 0. The
first approximation of the solution is

x = x0 + ε2ã cosΩt,

y = ε
4Ω

x0 (x2
0 − 1)

ã sinΩt. (50)

The further approximations contain the multiple of Ω and the frequency of stimulation ω.
Again, now we will show some numerical examples. On Figs. 6 and 7, there is shown the

solution of (46) together with the area of instability according (49) for different values of D.

Fig. 6. Amplitude vs. frequency for r = 0.02, x0 = 1 + Θ, y0 = 0.017 7, C = −0.004, D = 0.000 06

In Fig. 8, the solution of the original dynamical system for the corresponding data is stated.
The correspondence for chosen small values of C and D is very good. The cause is the approx-
imation (13).

Poincare mappings on Figs. 9 and 11 correspond to the quasi-periodical motion with two
frequencies Ω and ω = Ω + ε2ν2. These frequencies would occur in the second and further
approximations that have not been solved in this contribution.
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Fig. 7. Area of instability for r = 0.02, x0 = 1 + Θ, y0 = 0.017 7, C = −0.004, D = 0.000 6

Fig. 8. Amplitude vs. frequency for r = 0.02, x0 = 1 + Θ, y0 = 0.017 7, C = −0.004, D = 0.000 06

Fig. 9. Phase portrait and Poincare mapping with the period T = 2π
Ω for r = 0.02, x0 = 1 + Θ,

y0 = 0.017 7, C = −0.004, D = 0.000 06, ν2 = −0.05

5. Conclusion

The paper shows the possibility of MSM usage for the analysis of non-autonomous dynamical
system. This system is transformed into the autonomous one and the basic dynamical properties
are examined using the common method. From given examples, it is obvious that the crucial
point is the choice of the approximation (13) which influences the range where the approximated
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Fig. 10. Phase portrait for r = 0.02, x0 = 1 + Θ, y0 = 0.017 7, C = −0.004, D = 0.000 06, ν2 = 0

Fig. 11. Phase portrait and Poincare mapping with the period T = 2π
Ω for r = 0.02, x0 = 1 + Θ,

y0 = 0.017 7, C = −0.004, D = 0.000 06, ν2 = 0.1

solution is valid. That is the reason why the transition to chaos slightly evident on Figs. 9 and 11
is not seen from the MSM analysis. The future analysis of this dependence effects seems to be
necessary using the second order approximation.
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