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Abstract

A computational model of crack path for two-dimensional primary crack situated in a railway wheel rim is designed.
The railway wheel rim is placed on the wheel disc of railway wheel with interference fit. Crack behaviour is analysed
in the case of rectilinear ride of a train under rolling contact fatigue. Plank and Kuhn criterion is used to decide
whether crack will either kink and follow mode I controlled (tensile mode) path, or it will propagate coplanar
mode II controlled (shear mode). If mode I controlled crack growth is more probable then a direction of crack
propagation is predicted using the maximum tensile stress range criterion. In this way a relationship between stress
intensity factors and crack geometry is obtained. For comparison, crack behaviour in a solid railway wheel which
is not subjected to pre-stress loading is also analysed. In the latter case the contact forces in the wheel-rail contact
are considered to have i) only normal part ii) both the normal part and tangential part.
c© 2015 University of West Bohemia. All rights reserved.
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1. Introduction

It is a matter of fact that fatigue crack growth in railway wheels may lead to the loss of a
part of the wheel (spalling) or to radial crack extension. The result can be damage of rails
and sleepers or vehicle wheel (spalling) or a radial crack extension. The result can be damage
of rails and sleepers or vehicle components or even derailment. Obviously, with increasing
train speed and axle load, the rolling contact fatigue will grow in importance. There is a great
number of papers devoted to the problem of wheel-rail interaction. A reader is referred to the
overviews [2, 5, 10, 11, 14, 20, 28, 31, 32, 34, 36].

Fatigue cracks tend to initiate at the wheel tread [10] near the contact between wheel
and rail where plastic deformation develops. Due to ratcheting of surface material fatigue
cracks are initiated. Such an initiation is promoted by the occurrence of material defects. It
was observed [12] that ratcheting-induced surface cracks initially propagate at a shallow angle
which soon deviates into almost radial direction. Depending upon the applied loading, the crack
can later deviate into a circumferential direction. Another mechanism of crack initiation at the
wheel thread is connected with formation of wheel flats when the wheel slides on the rail.
After extreme thermal loading due to friction between rail and wheel, rapid cooling takes place
when the wheel is released and the heat is conducted into surrounding cold wheel area. As a
consequence, high surface tensile stresses develop and may cause crack initiation at microscopic
notches. Moreover, a brittle zone of martensite may form and, consequently, cracks are initiated.
They can further propagate as fatigue cracks.
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Nomenclature
a crack depth
b lateral dimension of contact patch
c width of contact patch
p contact pressure
vrel,x relative velocity at the contact patch
xL, yL local coordinate system
xG, yG global coordinate system
AIJ

ij , BIJ
ij influence matrices

E Young’s modulus
G shear modulus
ν Poisson’s ratio
Nc normal force
R wheel radius
T tangential force
V rolling velocity
ΔT time interval of the examined load

cycle
f friction coefficient between the

wheel and rail
μ friction coefficient between crack

faces
KI , KII stress intensity factors for modes I

and II

ΔKI = KImax − KImin, stress intensity factor
ΔKII = KIImax − KIImin ranges for modes I and II
ΔK∗

I ,ΔK∗
II cyclic stress intensity range at the

short supplementary crack kink
under non-proportional mixed
mode loading

KII mean value of KII during the
mode I cycle

ΔKIIeff effective mode II range
Keq equivalent stress intensity factor
ΔKth threshold of fatigue crack growth

for the cyclic mode I
ΔKIIth threshold of fatigue crack growth

for the cyclic mode II
N number of cycles
Δσn,max maximum tensile stress range
α1, α2 contact position angle
α3 contact position at the start of

mode I cycle
α4 contact position at the end of

mode I cycle
ϕ crack deviation angle
Δϕ range of crack deviation angle

The rolling contact fatigue is characterized by non-proportional mixed loading. Both shear
stress controlled and normal stress controlled crack growth was reported. An existing pre-
crack will either kink and will follow mode I controlled (tensile mode) path, or will propagate
coplanar mode II controlled (shear mode) [26]. The general conclusion is drawn stating that
non-proportional superposition of modes clearly affects the propagation behaviour of fatigue
cracks. Both the crack growth rate and the direction of propagation are influenced by this.
Maximum growth rate criterion proposed by Hourlier and Pineau [16] can be used to decide
between tensile mode and co-planar shear mode crack growth. According to the experimental
data, see e.g. [15,37], a phase shift from proportional loading to non-proportional loading leads
to an increase in fatigue life if the test is performed in a stress or load controlled condition. This
increase may be explained by a smaller local cyclic plastic deformation when load maxima do
not coincide.

Crack propagation rates in tensile mode often appear to be significantly lesser than the
coplanar growth rates. Plank and Kuhn [26] suggested that for initiating coplanar crack growth
the effective mode II range (i.e. the mode II range reduced due to a possible crack surface
friction) must exceed a material-specific threshold value

ΔKIIeff > ΔKIIth (1)

and, additionally
|ΔKII | > ΔK∗

I (Δϕ) , (2)

whereΔKII denotes the mode II range on the starter crack and ΔK∗
I (Δϕ) stands for the range

of stress intensity on the infinitesimally short supplementary crack andΔϕ is the range of crack
deviation angle ϕ. The range Δϕ is calculated from supplementary crack positions satisfying
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the local symmetry criterion ΔK∗
II = 0. Namely, Δϕ = ϕmax − ϕmin, where ϕmax, ϕmin are

two extreme angular positions for which the K∗
I reaches its maximum value under maximum

and/or minimum load. A stress intensity range on the infinitesimally short supplementary crack
is then as follows

ΔK∗
I (Δϕ) = K∗

Imax(ϕmax)− K∗
Imax(ϕmin). (3)

As pointed out by Doquet and Pommier [9], it is questionable whether SIFs or their combinations
are sufficient to describe crack growth rates under non-proportional loading because they cannot
capture the complex interactions in terms of crack tip plastic flow that are likely to be loading
path-dependent and to vary with the material behaviour. On the other hand, as long as the linear
fracture mechanics is valid, crack growth behaviour should be explained exclusively in terms
of linear elastic parameters. The aforementioned interactions could be captured by crack path
criteria and a suitably modified Paris law. However, some solutions of stress intensity factor for
the surface crack subjected to the simple tensile or shear stress have been found unavailable,
because rolling contact fatigue (RCF) cracks experience a complex non-proportional mixed-
mode loading and complicated boundary conditions [25]. Recently lot of work was devoted to
modelling of rolling contact fatigue cracks in rails, see e.g. [3,13,29,35]. The reason for that is
quite clear and is connected with the increasing number of failures of rails contrary to decreasing
number of failures of wheel and axles. More specifically, while failures of wheels and axles
have been reduced by a factor of 20 over the last century, failure of rails per train kilometre have
increased by a factor of more than 2 [30]. Fatigue cracks in rails initiate in the direction of wheel
motion with a shallow angle of 20–30 degrees to the surface. They may branch down under
repeated contact loading and propagate with a larger inclined angle to the rail surfaces, and finally
lead to rail failure. For an efficient rail maintenance is it important to understand all factors that
influence the fatigue propagation of short surface braking cracks. Apparently numerical tools
such as FE modelling of crack growth can shed light upon this problem. Bower [7] developed
a two-dimensional numerical model of surface initiated rolling contact fatigue cracks to study
mode I and mode II stress intensity factors. Bogdanski et al. [2,4,5] have used the finite element
method to examine the growth of rolling contact fatigue cracks and to predict crack tip stress
intensity factors, increasing the understanding of mixed mode stress intensity factors. According
to [3], the most promising models for RCF crack stress analyses are those which include liquid
entrapment mechanism as it gives a considerable enhancement of the Mode I crack loading.
Models developed by Kaneta et al. [23–25] included fluid pressure, which was assumed to
decrease linearly along the length of the crack, being equal to the contact pressure at the crack
mouth (e.g. at a railway wheel rail contact) and falling to zero at the crack tip. Stress intensity
factors were calculated for circular and elliptical contact patches and semi-elliptical cracks. Most
often Hertzian contact pressure distribution moving with respect to crack mouth is prescribed
in FE analysis.

In this paper, we focus on FE modelling of rolling contact fatigue cracks in railway wheels.
The goal is to simulate rolling contact fatigue crack growth for a two-dimensional (2D) case using
FEM and taking into account a non-proportional mixed-mode loading. A parametric analysis is
performed examining the influence of a friction of crack faces, presence of the tangential part
of contact force and its orientation and the crack direction criterion. The analysis starts with
an examination of whether a coplanar crack growth or tensile mode controlled crack growth,
respectively, is more probable. It is assumed that fatigue crack growth starts, if the equivalent
cyclic stress intensity ΔKeq exceeds ΔKth. Both, the radial crack extension and spalling are
predicted and it is shown how the crack path depends on model parameters.
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2. Numerical model

The starting point is the evaluation of contact forces in the wheel-rail rolling contact. The contact
forces can be evaluated as an integral part of the FE analysis of rolling contact fatigue crack
growth. However, such approach is extremely time- and memory-consuming one.

In order to reduce computational costs the following computational strategy consisting of
two basic steps was suggested — in the first step the contact forces are evaluated using the
CONTACT algorithm based on the boundary element method and developed by [21]. In the
second step the FEM model is loaded with these contact forces to evaluate crack behaviour.
The mentioned algorithm can be used for a contact of two bodies whose shapes cannot be
replaced with a surface with a constant local curvature or for a contact of bodies which have
different material properties. The algorithm treats separately the normal and tangential parts of
the contact. The expected contact area is discretised and the influence matrix accordingly to the
representation of Boussinesq and Cerruti [22] is calculated for each element.

By Kalker, the influence matrix of the element I in position xI(xI , yI) generated by the
element J is

AJ(xI , yI) ≡ AIJ =

=
1

π · G ·
xJ+Δx∫

xJ−Δx

yJ+Δy∫
yJ+Δy

⎡
⎢⎣
1−ν

ρ
+ (x′−xI)3

ρ3
ν·(x′−xI)·(y′−yI)

ρ3
K·(x′−xI)

ρ2

ν·(x′−xI)·(y′−yI)
ρ3

1−ν
ρ
+ (y′−yI )2

ρ3
K·(y′−yI)

ρ2

−K·(x′−xI)
ρ2

−K·(y′−yI)
ρ2

1−ν
ρ

⎤
⎥⎦ dx′ dy′, (4)

where ρ is defined as ρ =
√
(x′ − xI)2 + (y′ − yI)2 and G, ν and K are combined material

properties 1
G
= 1
2·G(1) +

1
2·G(2) , ν = G ·

(
ν(1)

2·G(1) +
ν(1)

2·G(2)

)
, K = G

4 ·
(
1−2·ν(1)

G(1)
+ 1−2·ν(2)

G(2)

)
, where

G stands for the shear modulus, ν is Poisson’s ratio and the superscripts (1) or (2) refer to the
wheel or rail respectively. The x-axis of the contact patch is identical with the direction of the
rolling velocity.

The deformation of the influence area is considered to be very small compared to the size
of the wheel or the rail. The relation between the element displacement ui(xI , yI) ≡ uI

i and the
load acting on the contact patch is written as

uI
i =

N∑
J=1

3∑
j=1

AIJ
ij · pJ

j , (5)

where pJ
j is the j-component of load acting on the element J of the contact patch and the

summation is performed over all elements of the contact patch.
The normal contact pressures are found from the solution of the system of equations

eI = hI + uI
3 = hI +

N∑
J=1

3∑
j=1

AIJ
3j · pJ

j ,

eI = 0 if the element I lies inside the contact patch, (6)
pJ

j = 0 if the element I lies outside the contact patch,

where eI is the deformed distance and hI is the undeformed distance. The normal force is
calculated as

Nc =
∑
I∈C

pI
3 · dSI . (7)

106



M. Kotoul / Applied and Computational Mechanics 9 (2015) 103–126

Tangential forces depend on the velocity of the vehicle, on relative velocities in the contact patch,
on the normal forces and on the coefficient of adhesion. The tangential forces can be calculated
similarly like the normal tractions. The basic presumption is to evaluate the influence matrices
AIJ

ij (current influence) and BIJ
ij , (influence of the previous time step). Then the following system

of equations is solved:

sI
τ = cI

τ +

∑N
J=1

∑3
j=1A

IJ
τj · pJ

j (t)− BIJ
τj · pJ

j (t − dt)
dt

,

sI
τ = 0 if element is in the adhesion area, (8)

sI
τ = −SI ·

pI
τ

f · pI
3

and
√

pI2
1 + pI2

2 = f · pI
3 if element is in the slip area SI ,

τ denotes the tangential direction on the contact surfaces, cI
τ is the rigid slip of an element, and

sI
τ is a virtual slip of an element. The time difference dt depends on the boundary element size
2dx and rolling velocity V , dt = 2·dx

V
. In the first step of the algorithm it is considered that

the adhesion area correspond to the whole contact patch, hence the slip area is an empty set.
Accordingly, the linear set of equations is solved in the first step:

0 = cI
τ +

∑N
J=1

∑3
j=1A

IJ
τj · pJ

j (t)− BIJ
τj · pJ

j (t − dt)
dt

, (9)

The solution of (9) for the contact patch of elliptical shape corresponds to the numerical solution
of Kalker’s linear theory of rolling contact. Tangential forces are defined as:

Tx =
∑

I

pI
1 · dSI , Ty =

∑
I

pI
2 · dSI . (10)

The distribution of contact pressures [19] along the direction parallel to the wheel axis is shown
in Fig. 1.

Fig. 1. Distribution of contact pressures along the direction parallel to the wheel axis

Fig. 2 shows the shape of half of the contact patch with distribution of contact pressures
calculated by Hertz algorithm (upper part of figure) and by the CONTACT algorithm (lower
part of figure) [19]. Apparently, the shape of the contact patch calculated using the CONTACT
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Fig. 2. Shape of half of the contact patch with distribution of contact pressures calculated by Hertz
algorithm (upper part of figure) and by the CONTACT algorithm (lower part of figure)

Fig. 3. Longitudinal tangential force as a function of the relative longitudinal creepage vx = vrel,x/V

algorithm differs from the Hertzian elliptic contact patch. Fig. 3 shows the longitudinal tangential
force as a function of the relative longitudinal creepage vx = vrel,x/V calculated by various
methods (vrel,x is the relative velocity at the contact patch). Except of linear solutions, the
longitudinal tangential force saturates at the value fNc.

Previous results provide a basis for transformation of 3D rolling contact to 2D rolling contact.
The wheel rim is considered to be sufficiently wide so that the contact problem can be reduced
to plane strain problem at least in the middle plane of the wheel. We proceed as follows — the
contact area is considered to be a strip x ∈ [−c, c] and the contact pressure is described by the
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2D Hertz solution

p(x) = pmax

√
1− x2

c2
, c2 =

8Nc/bR(1− ν2)
πE

, pmax =
2Nc

πcb
. (11)

Nc/b characterizes the normal force per unit length. The value of b is taken as the lateral
dimension of the contact patch (along the y-axis) calculated above, see Fig. 2 and approximately
equals to 20 mm. Considering Nc = 105N and the outer diameter of the wheel rim 2R = 920mm,
we get a 2D Hertz contact loading prescribed within the sector of approximately 1.2◦, see Fig. 4.

Fig. 4. 2D Hertz contact loading prescribed on the wheel rim within the sector approximately of 1.2◦

Numerical model of crack was created in the system ANSYS version 14 (ANSYS Inc.,
Canonsburg, PA, USA). A rectilinear ride of a train with a constant speed is assumed and no
geometric imperfections of rails and/or wheel tread are considered. An initial crack of depth of
2 mm is inclined to the tangential direction with shallow angle 20◦, see Fig. 4. Such geometrical
configuration is typical for railway wheels (RW) [36]. The depth of crack is increased by
0.03 mm after each loading step defined by the position of the crack mouth with respect to the
contact point in the range limited by angles α1 = −2◦ and α2 = 5◦, see Fig. 5. As it will be
shown later, outside this range both SIFs KI and KII are equal to zero if no static pre-stress is
present. Note that virtually a number of cycles is required to propagate the crack of 0.03 mm.
The number of cycles can be estimated for example using crack growth law developed by Bold
and Brown [6]:

ΔKeq =

√
ΔK2I +

(
614
507
ΔK3.21II

) 2
3.74

, (12)

da
dN
= 0.000 507(ΔK3.74eq −ΔK3.74th ),

where ΔKeq is an equivalent stress intensity factor combining mode I and II even though the
peaks ofΔKI andΔKII are out of phase. The crack extension is performed for a wide range of
deviation angle ϕ and the possibility of coplanar crack growth is tested using Eqs. (1) and (2).
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Fig. 5. Scheme of railway wheel geometry

Fig. 6. FE mesh and size of discretization

Two basic configurations are considered: a crack on wheel rim fixed by an interference fit
accompanied by a relative increase of the rim’s inner diameter of about 1.44 % (amounting
to approximately 1.11 mm), and a crack in a solid railway wheel. The outer diameter of the
wheel rim is 920 mm and the thickness of the rim is 75 mm. The FE mesh consists of quadratic
elements PLANE183, see Fig. 6. A sensitivity analysis of mesh has not revealed any substantial
changes in the values of stress intensity factors during further mesh refinement.

The mesh was graded such that it exhibits high density near the contact and near the crack
tip, see Fig. 6. It was shown elsewhere [32] that the concept of the linear elastic fracture
mechanics is likely to be valid for crack modelling in rolling contact fatigue of railway wheels.
Hence, a plastic zone ahead of the crack tip and related stress redistribution is not considered.
The material of the wheel is assumed to be homogeneous, isotropic with the Young modulus
E = 2.1 · 105 MPa and Poisson’s ratio ν = 0.3.

The wheel is loaded by a distribution of contact pressures which correspond to the total
contact force of 10 tons. The algorithm for Hertzian contact calculation was described above,
for more details see e.g. [1,17,18]. The contact pressure data are prescribed in individual nodes
of the quadratic element PLANE 183, see Fig. 7.
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Fig. 7. Nodes of quadratic elements where the contact pressure data are prescribed

The stress intensity factors at a crack for a linear elastic fracture mechanics analysis were
computed using the KCALC command in ANSYS. The analysis uses a fit of the nodal dis-
placements in the vicinity of the crack. For full model the ANSYS software uses formulas for
Θ = ±180◦ under plane strain conditions as follows:

KI =
1
4

√
π

2
E

1− ν2
|Δv|√

r
, KII =

1
4

√
π

2
E

1− ν2
|Δu|√

r
, KIII =

1
4

√
π

2
E

1− ν2
|Δw|√

r
,

where u, v, w are displacements, r,Θ— coordinates in local cylindrical coordinate system, see
Fig. 8 below.

Fig. 8. Scheme of the crack and the local cylindrical coordinate system

The nodal displacements are fitted by a linear approximation like e.g. |Δv|/
√

r = A+B · r.
If r approaches to zero, one obtains limr→0 |Δv|/

√
r = A. Then equation

KI =
1
4

√
π

2
E

1− ν2
|Δv|√

r

will become

KI =
1
4

√
π

2
E

1− ν2
A.

Collapsing quadratic quarter-point elements and nodes were used for computing stress intensity
factors at the crack tip.
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3. Results and discussion

3.1. Fatigue cracks in a wheel rim

As the first, a possibility of coplanar crack growth is examined. To this purpose, the Plank and
Kuhn criteria (1), (2) are tested. The K∗-factors on the short supplementary crack (0.03 mm) are
calculated during one loading cycle for a different crack deviation angles aiming to look for the
situation when K∗

I becomes maximum/minimum while K∗
II disappears. Hereafter fatigue crack

growth is modelled for two cases of surface friction between the crack faces: i) without friction
and ii) with friction prescribing the coefficient of friction μ = 0.5. The results are shown in
Fig. 9 and Fig. 10. Note that the interference fit generates a static pre-stress and, consequently,
static K-factors. It is particularly seen for the mode II loading. As pointed out by Plank and
Kuhn, the superposed static mode II loading may influence only the deviation and the crack
propagation rate, but does not influence the crack propagation mode. Hence, ΔK∗

I , ΔK∗
II and

alsoΔKII are referred to the static value which can be easily read far from the contact position
with respect to crack mouth, see Fig. 9. By inspection of results in Fig. 9 one can see that the
condition (2) is not fulfilled.

a)

b)

Fig. 9. a) ΔK∗
I and ΔK∗

II on the short supplementary crack for a wide range of crack deviation angles
as functions of rolling contact position with respect to crack mouth; b) ΔKII on the starter crack as a
function of rolling contact position with respect to crack mouth. Friction between the crack faces is not
considered
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Specifically, ΔKII for the starter crack takes the value of about 10 MPa m1/2, see Fig. 9b.
From Fig. 9a, it can be further deduced thatΔK∗

I (Δϕ) takes also the value of about 10 MPa m1/2

when K∗
Imax(ϕmax) ∼= 15 MPa m1/2 and K∗

Imax(ϕmin) ∼= 5 MPa m1/2 for ϕmax ∼= 70◦ and
ϕmin ∼= 50◦, respectively, see also Eq. (3). The situation is even more pronounced when the
surface friction between crack faces is considered, see Fig. 10. Observe in Fig. 10b that KII

takes the value of about −8.5 MPa m1/2 far from the contact position with respect to crack
mouth due to static pre-stress. The maximum value of KII approaches zero due to superposed
cyclic contact loading, hence ΔKII

∼= 8.5 MPa m1/2. The results shown in Fig. 10a indicate
that K∗

Imax(ϕmax) ∼= 18 MPa m1/2 for ϕmax
∼= 70◦ and K∗

Imax(ϕmin) ∼= 2 MPa m1/2 for
ϕmin

∼= −30◦, hence ΔK∗
I (Δϕ) takes value of about 16 MPa m1/2. To conclude, mode II

controlled crack growth is not likely to be initiated and the crack deviates tensile mode controlled
path.

a)

b)

Fig. 10. a) ΔK∗
I and ΔK∗

II on the short supplementary crack for a wide range of crack deviation angles
as functions of rolling contact position with respect to crack mouth; b) ΔKII on the starter crack as a
function of rolling contact position with respect to crack mouth. Surface friction between the crack faces
with the coefficient of friction μ = 0.5
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The procedure of fatigue crack path prediction under non proportional loading is based on
the assumption that the crack propagates in the direction perpendicular to the direction of the
maximum tensile stress rangeΔσn,max. Note thatΔσn,max criterion predicts well the crack path
in polymodal fatigue in structural steels. The crack deviation angle, ϕ, is given by the maximum
tensile stress range criterion as [8]

Δσn,max = max
ϕ

(
max
t∈ΔT
(Δσn(ϕ, t))

)
, (13)

where t is the time,ΔT is the time interval of the examined load cycle and

σn(ϕ, t) =
1

4
√
2πr

[
KI(t)

(
3 cos

ϕ

2
+ cos

3ϕ
2

)
− KII(t)

(
3 sin

ϕ

2
+ 3 sin

3ϕ
2

)]
+O(r).

Surprisingly, the crack deviation angle, ϕ, calculated from Eq. (13) differs by a few percents
from the angle calculated from Richard’s criterion [27]

ϕ = ∓
[
155.5◦ · |KII |

KI + |KII |
− 83.4◦ ·

(
|KII |

KI + |KII |

)2]
, (14)

where for KI and KII their mean values during the mode I cycle are substituted. The deviation
angle ϕ < 0 for KII > 0 and ϕ > 0 for KII < 0. The mean value of KII during the mode I
cycle is calculated as

KII =
1

α4 − α3
·
∫ α4

α3

KII(x) dx, (15)

where α3, α4 correspond to contact positions when mode I cycle starts and finishes, respectively.
In the subsequent loading step the calculated kinking angle ϕ is used to rotate the local

coordinate system xL, yL, see Fig. 11, and the constant crack increment of the length of 0.03mm
is then imposed.

Fig. 12 shows a predicted crack path in the global coordinate system depicted in Fig. 11, for
the case when friction is not considered and for the case when the coefficient of friction between
crack faces μ = 0.5.

Fig. 11. Scheme of the crack configuration
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a) Without friction between crack faces b) Friction coefficient μ = 0.5

Fig. 12. Predicted crack path in RW rim

Apparently, due to the interference between the rim and the wheel a radial crack extension is
a preferred mode of fracture. In the case of friction between crack faces, the crack path somewhat
diverts from the radial direction in comparison to the case without friction. This behaviour can
be easily explained by decrease of the effective mode II stress intensity factor due to friction. As
can be seen from Fig. 13, a small change of KII within the range 0÷ 3KI leads to a significant
change of the deviation angle ϕ.

Fig. 13. Comparison of different criteria for prediction of the crack path

3D graphs in Fig. 14 show how KI and KII depend on the contact position, cf. Fig. 11, and
on the crack depth. The calculations are performed for the case when the coefficient of friction
between crack faces μ = 0.5. Very similar results are obtained if no friction between crack faces
is considered. Apparently, the amplitudes of KI and KII grow with the crack depth.
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a)

b)

Fig. 14. KI and KII as functions of rolling contact position and crack depth

3.2. Fatigue crack path in a solid railway wheel

It is a matter of interest to compare the crack growth in the RW rim with a crack behaviour in a
solid railway wheel which is not subjected to pre-stress loading.

The initial geometry of the solid railway wheel containing a crack is the same as in the case
of rim wheel. Also boundary conditions and the computation algorithm are identical.

Analogously to the case of the RW rim we start examining a possibility of coplanar crack
growth. Consider frictionless contact between crack faces. By inspection of the results in Fig. 15
one can see that contrary to the RW rim the condition (2) is fulfilled in the case of the solid
railway wheel. Evidently, while ΔKII

∼= 9 MPa m1/2, K∗
Imax(ϕmax) is approximately equal

to 3.5 MPa m1/2 for ϕmax
∼= 70◦ and K∗

Imax(ϕmin) ∼= 2 MPa m1/2 for ϕmin
∼= −50◦, hence

ΔK∗
I (Δϕ) ∼= 1.5 MPa m1/2. However, this is only a necessary condition, in addition, the

effective mode II range must exceed a material-specific threshold value for initiating coplanar
crack growth, see the condition (1). Note that a very similar result is obtained if the friction
between crack faces is included.
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a)

b)

Fig. 15. a) ΔKI∗ and ΔK∗II on the short supplementary crack for a wide range of crack deviation
angles as functions of rolling contact position with respect to crack mouth; b) ΔKII on the starter crack
as a function of rolling contact position with respect to crack mouth

If mode II controlled crack growth is not likely to be initiated because the condition (1) is not
fulfilled, the crack deviates tensile mode controlled path. Using the same methodology as in the
case of RW rim, the crack path was predicted. Fig. 16a shows predicted crack path in the solid
railway wheel for the case when friction is not considered while Fig. 16b pertains to the case
when the coefficient of friction between crack faces μ = 0.1. Apparently, crack path simulations
in a solid railway wheel show that while without friction the crack follows a radial path shown
in Fig. 16a, spalling is preferred mode of fracture if friction of crack faces is considered.

3D graphs in Fig. 17a, and Fig. 17b, which display the way how KI and KII depend on
the contact position and on the crack depth, provide an explanation of such behaviour. Namely,
while KI changes only slightly with increasing friction between crack faces, cf. Fig. 17a and
Fig. 17b, the range of KII is reduced due to the crack surface friction, cf. Fig. 15b, Fig. 18a and
Fig. 18b.
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a) Without friction between crack faces b) Friction coefficient μ = 0.1

Fig. 16. Predicted crack path in solid railway wheel

a) Without friction between crack faces

b) Friction coefficient μ = 0.1

Fig. 17. KI as a function of rolling contact position and crack depth
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a) Without friction between crack faces

b) Friction coefficient μ = 0.1

Fig. 18. KII as a function of rolling contact position and crack depth

Specifically, for the initial crack without friction between crack faces ΔKII
∼= 9MPa m1/2

but already with the friction coefficient μ = 0.1 the mode II rangeΔKII decreases to 6 MPa m1/2.
Further, in the case when friction is not assumed between crack faces, the negative values of
KII prevail during the mode I cycle.

By contrast, the positive values of KII during the mode I cycle are more dominant when the
friction coefficient μ = 0.1 is considered, see Fig. 15b. As a result, the maximum tensile stress
range criterion predicts a positive value of crack deviation angle when friction is not assumed
and crack propagates towards the wheel centre, see Fig. 16a. On the other side, a negative value
of crack deviation angle is predicted in the latter case, and as a consequence, spalling may occur.

So far only normal contact forces in the wheel-rail contact were considered. However, the
contact forces generally have also tangential part. According to the linear theory of rolling
contact [21] the tangential force T exhibits a linear dependence on creepage, as it is also shown
in Fig. 3. However, in reality it saturates at value T = fNc, where f = 0.2 stands for the
coefficient of friction between the wheel and rail, see e.g. [33] and Nc is the resulting normal
contact force. Next, let us consider a saturated tangential force acting in the rolling contact. Two
mutual configurations of crack and tangential contact force depicted in Fig. 19 are considered.
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a) b)

Fig. 19. Two mutual configurations of crack and tangential contact force

First, let us start with the configuration in Fig. 19a. Consider that the friction coefficient
between crack faces μ = 0.1. By inspection of Fig. 20 one can see that the loading of crack is
very complex and it is not easy to examine the condition (2). Nevertheless, it is apparent that
in the stage of rolling contact specified by the range of angles α ∈ (−1◦; 1.4◦) is KI∗ always
smaller than KII , so the coplanar crack growth is possible if also the condition (1) is fulfilled.
It is not true in the last stage of rolling contact specified by the range of angles α ∈ (−1.4◦; 3◦),
where the condition (2) is not fulfilled. (Very similar result is obtained if the friction between
crack faces is not considered.) It means that mode I controlled crack growth can be initiated
during the latter stage. Fig. 21 shows predicted crack path in the solid railway wheel when the
tangential part of contact force acts in the direction shown in Fig. 19a. The case when friction is
not considered is shown in Fig. 21a while Fig. 21b pertains to the case when the coefficient of
friction between crack faces μ = 0.1 is prescribed. Crack path simulations indicate that crack
follows a nearly radial path. Contrary to the calculations when the contact force is purely normal
one, see Fig. 16, the presence of friction does not significantly influence the crack path.

Finally, the configuration shown in Fig. 19b is investigated. Consider that the friction
coefficient between crack faces μ = 0.1. By inspection of results in Fig. 23 one can see that
contrary to the configuration shown in Fig. 19a the condition (2) is not fulfilled in the first stage
of rolling contact, i.e. in the range of the contact position angle α ∈ (−2◦, 1◦). Note that a
similar result is obtained if the friction between crack faces is included. It means that crack will
deflect in this stage and the coplanar crack growth is not possible.

The predicted crack path in the solid railway wheel, when the tangential part of contact
force acts in the direction shown in Fig. 19b, is displayed in Fig. 22. Apparently, crack path
simulations show that spalling is preferred mode of fracture regardless of the presence of friction
between crack faces.

Apparently, all presented results depend on the calculated variations of the stress intensity
factors during rolling contact loading. It would be desirable to compare the calculated SIFs
towards the results in literature. The authors carried out very careful check of available literature,
however for specified boundary conditions no results for crack in rail wheels were found.
However, there are many results for cracks in rails. Perhaps closest to the results from the
point of view of boundary conditions are the results presented in Xiangyuan Xu et al. [35]
in their Fig. 5, where boundary conditions including the friction coefficients are very close to
the conditions used for the obtaining of results shown in Fig. 23a and Fig. 23b. Though the
variations of SIFs differ significantly, their maximum values differ by 5 % in case of the results
in Fig. 23 and by 33 % in case of the results in Fig. 23.
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a)

b)

Fig. 20. a) ΔK∗
I and ΔK∗

II on the short supplementary crack for a wide range of crack deviation angles
as functions of rolling contact position with respect to crack mouth; b) ΔKII on the starter crack as a
function of rolling contact position with respect to crack mouth. Tangential contact force is considered
according to the scheme in Fig. 19a. The friction coefficient between crack faces μ = 0.1
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a) Without friction between crack faces b) Friction coefficient μ = 0.1

Fig. 21. Predicted crack path in solid railway wheel. The tangential part of contact force acts in the
direction shown in Fig. 19a

a) Without friction between crack faces b) Friction coefficient μ = 0.1

Fig. 22. Predicted crack path in solid railway wheel. The tangential part of contact force acts in the
direction shown in Fig. 19b
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a)

b)

Fig. 23. a)ΔKI∗ andΔKII∗ on the short supplementary crack for a wide range of crack deviation angles
as functions of rolling contact position with respect to crack mouth; b) ΔKII on the starter crack as a
function of rolling contact position with respect to crack mouth. Tangential contact force is considered
according to the scheme in Fig. 19b. The friction coefficient between crack faces μ = 0.1

4. Concluding remarks

A computational 2D analysis of crack path for crack in a railway wheel rim was performed.
Two basic configurations were considered: a crack on wheel rim fixed by an interference fit
and a crack in a solid railway wheel. Plank and Kuhn criterion was used to decide whether
crack would either kink and follow mode I controlled (tensile mode) path, or it will propagate
coplanar mode II controlled (shear mode). If mode II controlled crack growth is not likely to
be initiated, the crack deviates tensile mode controlled path. In the latter case the procedure
of fatigue crack path prediction under non proportional loading was based on the assumption
that the crack propagates in the direction perpendicular to the direction of the maximum tensile
stress range Δσn,max.
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The computational analysis based upon the linear fracture and contact mechanics approach
allows drawing the following conclusions:

Crack path simulations in the RW rim show that the interference between the rim and
the wheel influences significantly the crack path. Radial crack extension is preferred mode of
fracture and the fatigue crack accelerates significantly with increasing crack depth. The friction
between crack faces seems to support shear dominated fatigue crack growth, nevertheless the
crack path does not change notably with friction. Hence, it may be stated that RW rim always
failures in radial direction and coplanar crack growth is not probable.

Crack path simulations in solid railway wheel show that, under assumption of pure normal
contact forces in the wheel-rail contact, spalling is preferred mode of fracture if the friction of
crack faces is considered while a radial path occurs if the friction is zero. Nevertheless, in both
cases coplanar crack growth is also possible mode of fracture. If also tangential part of contact
force is taken into account, then it is shown that orientation of the tangential part of contact
force matters. Specifically, the orientation illustrated in Fig. 19a promotes a radial crack path
regardless of presence of the friction between crack faces. A coplanar crack growth may occur
but mode I controlled crack growth is more probable. On the contrary, the orientation of the
tangential part of contact force illustrated in Fig. 19b promotes spalling regardless of presence
of the friction between crack faces and the coplanar crack growth does not occur.
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[15] Hoffmeyer, J., Döring, R., Seeger, T., Vormwald, M., Deformation behaviour, short crack growth
and fatigue livesunder multiaxial nonproportional loading, International Journal of Fatigue 28
(2006) 508–520.

[16] Hourlier, F., Pineau, A., Propagation of fatigue cracks under polymodal loading, Fatigue & Fracture
of Engineering Materials & Structures 5 (1982) 287–302.

[17] Jacobson, B., Kalker, J. J., Rolling contact phenomena, Springer-Verlag Wien GmbH, New York,
2000.

[18] Jandora, R., Modelling of the railway wheelset movement considering real geometry, Engineering
Mechanics 1 (2007) 105–106.

[19] Jandora, R., Numerical simulations of dynamic loads in wheel-rail contact with shape irregularities,
Doctoral Thesis, Brno Univesity of Technology, 2012.

[20] Kabo, E., Ekberg, A., Fatigue initiation in railway wheels — a numerical study of the influence of
defects, Wear 253 (2002) 26–34.

[21] Kalker, J. J., Paper I (iii) Elastic and viscoelastic analysis of two multiply layered cylinders rolling
over each other with coulomb friction, Tribology Series 17 (1990) 27–34.

[22] Kalker, J. J., Three-dimensional elastic bodies in rolling contact, Springer – Science+Business
Media, B.V., Waterloo, 1990.

[23] Kaneta, M., Murakami, Y., Propagation of semi-elliptical surface cracks in lubricated rol-
ling/sliding elliptical contacts, Journal of Tribology 113 (1991) 270–275.

[24] Kaneta, M., Murakami, Y., Suetsugu, M., Mechanism of surface crack growth in lubricated rol-
ling/sliding spherical contact, Journal of Applied Mechanics 53 (1986) 354–360.

[25] Kaneta, M., Yatsuzuka, H., Murakami, Y., Mechanism of crack growth in lubricated rolling/sliding
contact, A S L E Transactions 28 (1985) 407–414.

[26] Plank, R., Kuhn, G., Fatigue crack propagation under non-proportional mixed mode loading,
Engineering Fracture Mechanics 62 (1999) 203–229.

[27] Richard, H. A., Fulland, M., Sander, M., Theoretical crack path prediction, Fatigue & Fracture of
Engineering Materials & Structures 28 (2005) 3–12.

[28] Richard, H. A, Sander, M., Fulland, M., Kullmer, G., Development of fatigue crack growth in real
structures, Engineering Fracture Mechanics 75 (2008) 331–340.

[29] Ringsberg, J. W, Bergkvist, A., On propagation of short rolling contact fatigue cracks, Fatigue
& Fracture of Engineering Materials & Structures 26 (2003) 969–983.

[30] Smith, R. A., Fatigue in transport: problems, solutions and future threats, Process Safety and
Environmental Protection 76 (1998) 217–223.

125



M. Kotoul / Applied and Computational Mechanics 9 (2015) 103–126

[31] Taraf, M., Zahaf, E. H., Oussouaddi, O., Zeghloul, A., Numerical analysis for predicting the rolling
contact fatigue crack initiation in a railway wheel steel, Tribology International 43 (2010) 585–593.

[32] Wallentin, M., Bjarnehed, H. L., Lundén, R., Cracks around railway wheel flats exposed to rolling
contact loads and residual stresses, Wear 258 (2005) 1 319–1 329.

[33] Weber, R. L., Manning, K. V., White, M. W., College Physics, 4th Edition, USA, McGraw-Hill,
1965.

[34] Wong, S. L., Bold, P. E., Brown, M. W., Allen, R. J., A branch criterion for shallow angled rolling
contact fatigue cracks in rails, Wear 191 (1996) 45–53.

[35] Xu, X., Cho, D.-H., Chang, Y.-S., Choi, J.-B., Kim, Y.-J, Jun, H.-K., Seo, J.-W., Kim, D.-S.,
Evaluation of slant crack propagation under RCF in railway rail, Journal of Mechanical Science
and Technology 25 (2011) 1 215–1 220.
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