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Abstract

An exact method is presented for solving the vibration of a double-beam system subjected to harmonic excitation.
The system consists of a loaded main beam and an auxiliary beam joined together using massless visco-elastic
layer. The Euler-Bernoulli model is used for the transverse vibrations of beams, and the spring-dashpot represents
a simplified model of viscoelastic material. The damping is assumed to be neither small nor proportional, and
the forcing function can be either concentrated at any point or distributed continuously. The method involves
a simple change of variables and modal analysis to decouple and to solve the governing differential equations
respectively. A case study is solved in detail to demonstrate the methodology, and the frequency responses are
shown in dimensionless parameters for low and high values of stiffness and damping of the interlayer. The analysis
reveals two sets of eigen-modes: (i) the odd in-phase modes whose eigen-values and resonant peaks are independent
of stiffness and damping, and (ii) the even out-of-phase modes whose eigen-values increase with raising stiffness
and resonant peaks decrease with increasing damping. The closed-form solution and relevant plots (especially the
three-dimensional ones) illustrate not only the principles of the vibration problem but also shed light on practical
applications.
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1. Introduction

Two parallel slender beams with a visco-elastic interlayer can serve as a relevant mathematical
model of a number of engineering systems. The principle is analogous with the tuned mass
damper (TMD) widely used to diminish vibration of high slender structures excited by strong
dynamic effects of wind. A typical example is a double skin facade of tall buildings. The outer
skin can be considered as a dynamic damper and thus contributes to comfort inside the building.
Some information have been published rather in review papers having engineering character,
see for instance [1, 2, 6] or books dealing with general wind engineering [3, 7].

A remarkable example of a realized structure which utilizes this principal of the damping is
the “Tokyo Sky Tree”. It concerns the city transmission tower of the height 634 m, erected and
opened in 2013, see Fig. 1. It consists of two coaxial parts coupled together by a large number
of dashpots. Authors claim that possessing this equipment, the tower is able to weather an
earthquake attack of 9.0 degree and adequate windstorm as well. Anyway detailed information
are hardly accessible.

Many other applications emerge in power piping, when using two coaxial pipes with an in-
terlayer in order to suppress vibration due to flow and structure interaction. Similar inconvenient
behavior can exhibit panels which fall into the flutter post-critical state (panel flutter). Further
applications can be expected at industrial chimneys, towers, etc. The idea of vibration damping
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using such a formation is inspired by very well known TMD which is widely used in civil and
mechanical engineering. Nevertheless its internal structure, function, limitations and singular
states are incomparably more complicated. Therefore adequate applications should be cautious
and possible recommendations addressed to designers of such devices should be thought out
carefully.

In any case the system being based on two continuous beams with a visco-elastic interlayer
looks to be very promising. It is suitable to work not only in one frequency domain like a
conventional TMD, but can serve in several frequency domains and therefore it is appropriate
to be used in a broad band excitation environment.

The paper presents a detailed analysis of eigen and forced vibration of the double-beam
system with massless visco-elastic interlayer. Some partial cases have been already discussed
in literature in the past, see for instance [4,5,8]. However mathematical aspects of this problem
are still rather limited and should be treated at the level obvious in Rational Mechanics.

Fig. 1. “Tokyo Sky Tree” transmission tower

2. Basic considerations

Linear eigen and forced vibrations of two parallel beams with massless visco-elastic interlayer
are investigated. Simple Euler-Bernoulli models with prismatic cross section are considered.
Thickness of the interlayer is constant. Boundary conditions can be basically adopted in any
arbitrary configuration, nevertheless certain frequently used settings are discussed in order to
keep some analogy with real structures. Three possible schemes are obvious from Fig. 2. So that
we can formulate the differential system:

EJ1u
′′′′
1 + b1u̇1 + b(u̇1 − u̇2) + c(u1 − u2) + μ1ü1 = f(x, t),

EJ2u
′′′′
2 + b2u̇2 + b(u̇2 − u̇1) + c(u2 − u1) + μ2ü2 = 0,

(1)

where geometric and physical parameters of booth beams and interlayer are considered constant
independent on the length coordinate, see Fig. 2. In particular the following nomenclature has
been adopted: EJi – bending stiffness of i-th beam (i = 1, 2) [Nm2]; μi – mass/length of
the adequate beam [Ns2m−2]; bi, b – viscous damping/length of adequate beam or interlayer
respectively [Nsm−2]; c – normal stiffness of the interlayer/length [Nm−2]; f(x, t) – excitation
force/length [Nm−1]. There are a priori neglected (i) beams: shear deformability, cross-section
rotation inertia, static length force (Euler-Bernoulli beams are considered); (ii) interlayer: shear
stiffness, shear damping.
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Fig. 2. Outline of structures with interlayer: (a) two coaxial cylindric-consoles, (b) two coaxial slender
cylinders - inner is on one side fully clamped while outer one is free on both sides, (c) two parallel beams,
beam (1) is simply supported, beam (2) is free on both sides

As stationary processes only will be investigated in the meaning of eigen vibration or forced
vibration due to stationary excitation of f(x, t) = F (x)eiωt type, than space and time coordinates
in functions u1 = u1(x, t), u2 = u2(x, t) can be separated and moreover the response time history
in harmonic form with the frequency ω can be adopted. Hence displacements u1(x, t), u2(x, t)
enable to be written in the form as commonly used:

u1(x, t) = v1(x) · eiωt, u2(x, t) = v2(x) · eiωt. (2)

Substituting expressions from (2) into the basic system given by (1) one obtains:

v
′′′′
1 (x)− (λ41 − iβ1)v1(x)− (γ1 + iδ1)v2(x) = F (x)/EJ1,

v
′′′′
2 (x)− (γ2 + iδ2)v1(x)− (λ42 − iβ2)v2(x) = 0,

(3)

where it has been denoted:

λ41 =
μ1ω

2 − c

EJ1
, β1 =

b1 + b

EJ1
ω, γ1 =

c

EJ1
, δ1 =

bω

EJ1
,

λ42 =
μ2ω

2 − c

EJ2
, β2 =

b2 + b

EJ2
ω, γ2 =

c

EJ2
, δ2 =

bω

EJ2
.

(4)

A solution of the homogeneous differential system in (3) can be written in the form:

v1(x) = V1e
ψx, v2(x) = V2e

ψx and v
′′′′
1 (x) = V1ψ

4eψx, v
′′′′
2 (x) = V2ψ

4eψx, (5)

which provides a homogeneous algebraic system:
[

ψ4 − Λ41, −q1
−q2, ψ4 − Λ42

]
·
[

V1
V2

]
= 0, (6)

where
Λ41 = λ41 − iβ1, q1 = γ1 + iδ1, Λ42 = λ42 − iβ2, q2 = γ2 + iδ2. (7)

The determinant of the system, equation (6), should vanish:

(ψ4 − Λ41)(ψ4 − Λ42)− q1q2 = 0, (8)
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which means:

Ψ41 = ψ41−4 =
1
2

[
A + (A2 +B2)1/2

]
, Ψ42 = ψ45−8 =

1
2

[
A − (A2 +B2)1/2

]
,

A = Λ41 + Λ
4
2, B2 = −4Λ41Λ42 + 4q1q2, D2 = A2 +B2 = (Λ41 − Λ42)2 + 4q1q2.

(9)

Let us proceed to the vector [V1, V2]T , see (6). With respect to (8) and symbolics introduced in
(9), one can determine [V1, V2]T up to the multiplication constant dissembling the matrix in (6)
with respect to the first row inserting successively ψ4 = Ψ41 and Ψ42:

V11 = V1,1−4 = Ψ41 − Λ42 = 1
2

[
Λ41 − Λ42 + ((Λ41 − Λ42)2 + 4q1q2)1/2

]
, V21 = V2,1−4 = q2,

V12 = V1,5−8 = Ψ42 − Λ42 = 1
2

[
Λ41 − Λ42 − ((Λ41 − Λ42)2 + 4q1q2)1/2

]
, V22 = V2,5−8 = q2,

(10)

where [V11, V21]T corresponds with Ψ41 while [V12, V22]T with Ψ42. These roots satisfy (6) either
due to zero determinant, equation (8), or directly.

3. Beams and interlayer without damping

3.1. General solution

Let us examine eigen-values and eigen-modes in case when the viscous damping of beams
and interlayer vanishes, i.e. b1 = b2 = b = 0. Parameters Λ41,Λ42, q1, q2 following relations (4)
become real and therefore ψ4 is real either positive or negative. Distribution of the roots ψ1−4
and ψ5−8 around the unit circle is:

α41−4 = +1⇒ α1−4 =
〈±1
±i , α45−8 = −1⇒ α5−8 =

±1± i√
2

. (11)

Parameters A, B and ω2a, ω2b have the form:

A2 =

(
μ1ω

2 − c

EJ1
+

μ2ω
2 − c

EJ2

)2
, B2 =

−μ1μ2ω
4 + cω2(μ1 + μ2)
EJ1EJ2

,

ω2a = c
EJ1 + EJ2

EJ1μ2 + EJ2μ1
, ω2b = c

μ1 + μ2
μ1μ2

, it holds: ω2b > ω2a.

(12)

See Fig. 3 for relation of A, B parameters as functions ω. Character of integral of homogeneous
system (1) is specified by attributes of A, B. Therefore following intervals or special values of
ω should be separately treated:

(a) ω2 = 0, A < 0, B2 = 0, ψ41−4 = 0, ψ45−8 < 0,

ψ1−4 = 0, ψ5−8 = (±1± i)ρ2, ρ2 =
1√
2

(
c

EJ1
+

c

EJ2

)1/4
, (13)

(b) 0 < ω2 < ω2b , A < D, ψ41−4 > 0, ψ5−8 < 0,

ψ1−4 =
〈±1
±i · ρ3, ρ3 = (12A+

1
2D)

1/4,

ψ5−8 = (±1± i) · ρ4, ρ4 = 1√
2
(12D − 1

2A)
1/4,

ω2 < ω2a ⇒ ρ3 < ρ4, ω2a < ω2 < ω2b ⇒ ρ3 > ρ4,

(14)

note: ω2 = ω2a does not mean any turning point in solution types, only a quantitative
difference,
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(a) (b)

Fig. 3. Parameters and arguments as functions of the frequency ω: (a) Parameters A, A2 , B2, (b) Arguments
ψ41−4, ψ45−8

(c) ω2 = ω2b , B = 0, A = D, ψ41−4 > 0, ψ45−8 = 0,

ψ1−4 =
〈±1
±i · ρ5, ρ5 = A1/4 = (λ41 + λ42)

1/4, ψ5−8 = 0, (15)

(d) ω2 > ω2b , A > D, ψ41−4 > 0, ψ45−8 > 0,

ψ1−4 =
〈±1
±i · ρ7, ρ7 = (12A +

1
2D)

1/4,

ψ5−8 =
〈±1
±i · ρ8, ρ8 = (12A − 1

2D)
1/4,

ρ7 > ρ8. (16)

Let us outline position of roots in the Gaussian complex plane, see Fig. 4, when ω2 is increasing
from zero throughout all partial intervals until a certain ω2 > ω2b . The basic character of roots
follows from (11). Roots ψ41−4 and ψ45−8 are moving from the left to the right on the real axis.
We start with ω2 = 0 providing zero ψ41−4 = 0 and negative ψ45−8 < 0, see Fig. 4a, then passing
interval 0 < ω2 < ω2b one obtains ψ41−4 > 0 and ψ45−8 < 0 so that roots ψ1−4 are distributed on
coordinate axes in a distance ρ3 from the origin and similarly ψ5−8 on diagonals of quadrants
with radius ρ4, see Fig. 4b. It follows a transition case ω2 = ω2b giving ψ41−4 > 0 and ψ45−8 = 0
which means that ψ1−4 lie at coordinate axes on a circle of diameter ρ5, see Fig. 4c. Finally
whatever ω2 > ω2b leads to positive ψ41−4 > 0 as well as ψ45−8 > 0 and therefore provides always
twice four roots only on coordinate axes distributed on concentric circles of diameters ρ7, ρ8,
see Fig. 4d.

Fig. 4. Position of roots ψ1−4 and ψ5−8 in Gaussian complex plane in individual intervals ω2 following
(13)–(16) — damping is neglected
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Avoiding any damping the vectors [V1i, V2i]T , i = 1, 2, equations (10), can be written as
follows:

V11 = 1
2

[
λ41 − λ42 + ((λ

4
1 − λ42)

2 + 4γ1γ2)1/2
]
, V21 = γ2,

V12 = 1
2

[
λ41 − λ42 − ((λ41 − λ42)

2 + 4γ1γ2)1/2
]
, V22 = γ2.

(17)

General solutions inherent to (5) in individual values and intervals of ω corresponding with (13),
(14), (15), (16), can be formulated using Euler formulae:

(a) ω2 = 0 :
∣∣∣∣ v1(x)
v2(x)

∣∣∣∣ =
∣∣∣∣ V11
V21

∣∣∣∣ · (C1 + C2x+ C3x
2 + C4x

3) +
∣∣∣∣ V12
V22

∣∣∣∣ · (C5 cosh ρ2x · cos ρ2x+ C6 cosh ρ2x · sin ρ2x+ (18)

C7 sinh ρ2x · cos ρ2x+ C8 sinh ρ2x · sin ρ2x),

(b) 0 < ω2 < ω2b :

rcl

∣∣∣∣ v1(x)
v2(x)

∣∣∣∣ =
∣∣∣∣ V11
V21

∣∣∣∣ · (C1 cos ρ3x+ C2 sin ρ3x+ C3 cosh ρ3x+ C4 sinh ρ3x) +∣∣∣∣ V12
V22

∣∣∣∣ · (C5 cosh ρ4x · cos ρ4x+ C6 cosh ρ4x · sin ρ4x+ (19)

C7 sinh ρ4x · cos ρ4x+ C8 sinh ρ4x · sin ρ4x),

(c) ω2 = ω2b :∣∣∣∣ v1(x)
v2(x)

∣∣∣∣ =
∣∣∣∣V11V21

∣∣∣∣ · (C1 cos ρ5x+ C2 sin ρ5x+ C3 cosh ρ5x+ C4 sinh ρ5x) + (20)
∣∣∣∣V12V22

∣∣∣∣ · (C5 + C6 x+ C7 x2 + C8 x3),

(d) ω2 > ω2b :∣∣∣∣ v1(x)
v2(x)

∣∣∣∣ =
∣∣∣∣V11V21

∣∣∣∣ · (C1 cos ρ7x+ C2 sin ρ7x+ C3 cosh ρ7x+ C4 sinh ρ7x) + (21)
∣∣∣∣V12V22

∣∣∣∣ · (C5 cos ρ8x+ C6 sin ρ8x+ C7 cosh ρ8x+ C8 sinh ρ8x).

The particular solution, equation (19), should continuously pass into (18) for ω → 0 and into
(20) for ω → ωb from below. Similarly the particular solution (21) when ω → ωb from above.
Limitations of (19) or (21) to ω = 0 or ω = ωb should be done via relevant decompositions
around ω = 0 or ω = ωb in order to pass smoothly into (18) or (20).

Let us introduce boundary conditions corresponding to Fig. 2a. Both beams are consoles
and eigen-value problem is considered, which means:

v1(0) = 0, v′
1(0) = 0, v′′

1(l) = 0, v′′′
1 (l) = 0,

v2(0) = 0, v′
2(0) = 0, v′′

2(l) = 0, v′′′
2 (l) = 0.

(22)
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The problem will be discussed at the interval ω2 > ω2b . Regarding the general solution of the
type (d), equations (21), one can carry out a system of eight algebraic equations for unknown
integration constants C1 − C8:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

v1(0)

v
′
1(0)

v2(0)

v
′
2(0)

v
′′
1 (l)

v
′′′
1 (l)

v
′′
2 (l)

v
′′′
2 (l)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

V11, 0, V11, 0,

0, V11ρ7, 0, V11ρ7,

V21, 0, V21, 0,

0, V21ρ7, 0, V21ρ7,

− V11ρ
2
7Cs7, − V11ρ

2
7Sn7, V11ρ

2
7Ch7, V11ρ

2
7Sh7,

V11ρ
3
7Sn7, − V11ρ

3
7Cs7, V11ρ

3
7Sh7, V11ρ

3
7Ch7,

− V21ρ
2
7Cs7, − V21ρ

2
7Sn7, V21ρ

2
7Ch7, V21ρ

2
7Sh7,

V21ρ
3
7Sn7, − V21ρ

3
7Cs7, V21ρ

3
7Sh7, V21ρ

3
7Ch7,

V12, 0, V12, 0

0, V12ρ8, 0, V12ρ8

V22, 0, V22, 0

0, V22ρ8, 0, V22ρ8

− V12ρ
2
8Cs8, − V12ρ

2
8Sn8, V12ρ

2
8Ch8, V12ρ

2
8Sh8

V12ρ
3
8Sn8, − V12ρ

3
8Cs8, V12ρ

3
8Sh8, V12ρ

3
8Ch8

− V22ρ
2
8Cs8, − V22ρ

2
8Sn8, V22ρ

2
8Ch8, V22ρ

2
8Sh8

V22ρ
3
8Sn8, − V22ρ

3
8Cs8, V22ρ

3
8Sh8, V22ρ

3
8Ch8

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

C1

C2

C3

C4

C5

C6

C7

C8

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

0

0

0

0

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

(23)

where following notation has been used:

Cs7 = cos ρ7l, Sn7 = sin ρ7l, Ch7 = cosh ρ7l, Sh7 = sinh ρ7l,
Cs8 = cos ρ8l, Sn8 = sin ρ8l, Ch8 = cosh ρ8l, Sh8 = sinh ρ8l.

(24)

For modal properties eigen-values and eigen-vectors of the square matrix in (23) are to be
found out. If the response due to harmonic excitation with the frequency ω at boundaries is
investigated, the system (23) for relevant non-homogeneous right side should be solved and
integration constant substitute backwards into (21).

3.2. Special configuration of structural parameters of beams

Special case of structural parameters has been considered regarding following relation of para-
meters:

EJ2/EJ1 = kEJ = kμ = μ2/μ1, or μ1/EJ1 = μ2/EJ2. (25)

Fulfilment of this relation provides the identical modal properties of both individual beams. The
typical solution of the determinant of the square matrix in (23) related to this system is depicted
as a function of ω in Fig. 5. In all numerical simulations the following structural parameters of
the beams have been used: EJ1 = 8.1GNm2, μ1 = 660.5Ns2m−2, l = 100m, kEJ = kμ = 1/3.
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Fig. 5. Determinant of the system as a function of ω (c = 162 Nm−2)

The zero values of the determinant, i.e. eigen-values of the system, are equal to the roots of
characteristic equation, which splits into two equations:

1 + cos ρ7l · cosh ρ7l = 0, 1 + cos ρ8l · cosh ρ8l = 0, (26)

providing two groups of the roots (even and odd). Take a note that each of (26) represents a
characteristic equation typical for a cantilever beam.

The odd eigen-values and eigen-modes are related to ρ7:

ρ47 =
μ1ω

2

EJ1
=

μ2ω
2

EJ2
⇒ ω7(j), j = 1, 2, . . . , (27)

where subscript 7(j) in ω7(j) means adjointness with the ρ7 root and j is a number of the couple
of eigen-values (see also symbolics used in Fig. 5). The above eigen-values are independent
from the interlayer stiffness and identical with those of the individual beams. The equality
between elements of vector V :

V11 = V21, (28)

leads to the same amplitude as well as the phase of the corresponding points on both beams
during the free vibration associated with odd modes, see Fig. 6.

ω7(1) = 1.2309 rad s−1 ω8(1) = 1.5796 rad s−1 ω7(2) = 7.7126 rad s−1 ω8(2) = 7.7761 rad s−1

Fig. 6. The first four eigen-modes of the beam pair coupled by visco-elastic interlayer (black line –
primary beam, blue line – secondary beam, c = 162 Nm−2)
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The even eigen-values related to:

ρ48 =
μ1ω

2

EJ1
− c

EJ1 + EJ2
EJ1 · EJ2

⇒ ω8(j), j = 1, 2, . . . (29)

are equal to the eigen-values of the system represented by individual cantilever beam supported
by an elastic layer. The effective stiffness of this fictive layer is a function of the interlayer
stiffness and of the beams stiffnesses ratio. Similarly like before the subscript 8(j) means
adjointness with ρ8 root and j is a number of the couple of eigen-values. Even eigen-modes are
also composed from the modes of individual beams. In contrary to the odd modes, the phase
between corresponding points on both beams is opposite. The ratio of the amplitudes of the
points is constant and equal to a ratio of the stiffness of the beams:

V12 = −kEJ V22. (30)

Fig. 7. Top deflection of the primary beam as a function of ω for several stiffness c

The influence of the stiffness c on the eigen-values of the system is shown in Fig. 7. The
deflection at the top of the primary beam excited by the harmonic force is depicted as a function
of ω. The first asymptote, which indicates the position of the first eigen-value, is obviously
common for every c being independent from this one. It is related with the root ψ7(j) leading
to eigen-values ω

(k)
7(j), where j = 1, 2 is a number of eigen-values couple and k = 1, 2, 3

means number of interlayer stiffness considered c(1), c(2), c(3), see Fig. 7; compare with red
highlighted boxes in Fig. 8. The eigen-values of the even group are increasing with the raising c.
It corresponds with the root ψ8(j) providing eigen-values ω

(k)
8(j) with analogous symbolics used

in sub- and super-scripts.
It is worthy to get an overview about an influence of the interlayer stiffness c onto the

distribution of eigen-values in the plane (ω, c). Such a picture will complete appropriately Fig. 7
of top deflection resonance curves.

Let us recall formulae (27) and (29) for ρ47, ρ
4
8 and (12) for ω2b . Considering (26), several first

roots (odd and even) have been evaluated:

ρ7(1) = ρ8(1) = 1.8751/l, ρ7(2) = ρ8(2) = 4.6941/l, ρ7(3) = ρ8(3) = 7.8543/l, . . . (31)
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Fig. 8. Distribution of eigen-values in the plane (ω, c)

Couples of eigen-values as functions of ω can be plotted in the plane (ω, c):

μ1ω
2

EJ1
= ρ47(j), c =

(
μ1ω

2

EJ1
− ρ48(j)

)
EJ1 · EJ2
EJ1 + EJ2

. (32)

There are plotted in Fig. 8 two couples for j = 1, 2. We can see that parabolas representing the
even roots are identical for every j. They differ only by position of the apex on the c axis. The
figure shows that every even root can cross the vertical line of every odd roots of the level k > j
on the value c > 0:

c = (ρ48(k) − ρ48(1)) ·
EJ1 · EJ2
EJ1 + EJ2

, (33)

see e.g. the point χ12. At this point a double eigen-value exists corresponding simultaneously to
the even eigen-mode of the first couple and the odd eigen-mode of the second couple, see Fig. 8.

Difference rate of even and odd roots in every couple when increasing c can be estimated at
the ω axis by the first derivative of the second part of (32):

Δj = 2
√

μ1
EJ1

· ρ28(j). (34)

Therefore the difference rate of even and odd roots at the ω axis is decreasing with raising j as
it could be seen also in Fig. 5.

It is useful to determine the limit of results validity which have been carried out for the case
ω2 > ω2b . It follows immediately from (12):

c = ω2
μ1 · μ2
μ1 + μ2

. (35)

Taking into account constraints (25) it can be easily shown that openings of the parabola (35)
and that following from the second part of (32) are identical. The parabola (35) passes the origin
and therefore it cannot intersect them. This parabola delimits validity of results (13)–(16) and
(18)–(21) obtained for non-damped system, see Fig. 8. Using this picture, it can be decided,
which roots evaluated using (26) are valid and which should be rejected.
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4. Beams and interlayer with damping

4.1. General solution — damped interlayer

Investigating a real structure it can be supposed that the damping of beams is small in comparison
with that of the interlayer. Therefore recalling (6)–(9) we can adopt b1 = b2 = 0 and b > 0,
which means that β1 = δ1 > 0 and β2 = δ2 > 0. Thus Λ41,Λ

4
2, q1, q2 are complex similarly like

A, B2, D2 and roots Ψ1,Ψ2, ψ1−4, ψ5−8. Consequently, we can write:

A = Ar + iAi = λ41 + λ42 − i(δ1 + δ2),
A2 = Ar2 + iAi2 = (λ41 + λ42)

2 − (δ1 + δ2)2 − 2i(λ41 + λ42)(δ1 + δ2),
B2 = Br2 + iBi2 = −4(λ41λ42 − γ1γ2) + 4i((λ41 + γ1)δ2 + (λ42 + γ2)δ1),
D2 = Dr2 + iDi2 = (λ41 − λ42)

2 + 4γ1γ2 − (δ1 + δ2)2−
2i((λ41 − λ42 − 2γ2)δ1 − (λ41 − λ42 + 2γ1)δ2),

D = Dr + iDi, D2r =
1
2

(
Dr2 +

√
D2r2 +D2i2

)
, D2i =

1
2

(
−Dr2 +

√
D2r2 +D2i2

)
.

(36)

With respect to (9) it can be written:

ψ41−4 =
1
2
(Ar +Dr + i(Ai +Di)), ψ45−8 =

1
2
(Ar − Dr + i(Ai − Di)), (37)

which leads to individual roots:

j = 1–4 : ψj = ρc1 exp

(
i
4
(ϕc1 + (j − 1)π)

)
,

ρc1 =

(
1
4
(Ar +Dr)

2 +
1
4
(Ai − Di)

2

)1/8
, ϕc1 = arctg

Ai +Di

Ar +Dr
,

j = 5–8 : ψj = ρc2 exp

(
i
4
(ϕc2 + (j − 1)π)

)
, (38)

ρc2 =

(
1
4
(Ar − Dr)

2 +
1
4
(Ai − Di)

2

)1/8
, ϕc2 = arctg

Ai − Di

Ar − Dr
,

exp

(
i
4
(j − 1)π

)
=

〈±1
±i , exp

(
i
4
ϕck

)
= cos

1
4
ϕck + i sin

1
4
ϕck, k = 1, 2.

Position of roots in the Gaussian plain can be transparently demonstrated enhancing configu-
rations described for non damped case presented in Fig. 4. Fig. 9a demonstrates an event ω = 0

Fig. 9. Position of roots ψ1–4 and ψ5–8 in Gaussian complex plane for damped system; (a) ω2 = 0;
(b) ω2 > 0
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which is certainly identical with that for non damped configuration. Concerning Fig. 9b, it
encompasses in a certain meaning paragraphs (b)–(d) discussed in subsection 3.1. Position of
Ψ1 = ψ41−4 andΨ2 = ψ45−8 in Gaussian plane is obviously given by vector summation of “A/2”
and “±D/2” or being depicted in the picture by absolute values ρc1, ρc2 and arguments ϕc1, ϕc2.
The fourth roots of both Ψ1,Ψ2 provides distinct rosettes ψ1 − ψ4 and ψ5 − ψ8.

Moving in Gaussian plane, we cannot reach the origin (the special case ω2 = ω2b — par. (c)).
To end up into this point would require Br2 = Bi2 = 0 which is not possible with respect to
(36) as far as ω > 0.

As regards comparison with paragraphs (b) and (d), they enable to be processed together
when consistently all parameters are understood as complex values. Therefore the general
solution for every ω > 0 can be formulated simply as follows:

∣∣∣∣ v1(x)
v2(x)

∣∣∣∣ =
∣∣∣∣ V11
V21

∣∣∣∣ · (C1 cosψ1x+ C2 sinψ1x+ C3 coshψ1x+ C4 sinhψ1x)+

∣∣∣∣ V12
V22

∣∣∣∣ · (C5 cosψ5x+ C6 sinψ5x+ C7 coshψ5x+ C8 sinhψ5x),

(39)

where ψ1, ψ5 are complex numbers given by (38) (j = 1, 5). Considering Euler’s formula they
read:

ψ1 = ρc1

(
cos
1
4
ϕc1 + i sin

1
4
ϕc1

)
, ψ5 = ρc2

(
cos
1
4
ϕc2 + i sin

1
4
ϕc2

)
. (40)

Parameters V11–V22 have the original form corresponding to (10). Integration constants C1–C8
are complex numbers. Taking into account that the solution (39) is formally of the same shape
as the solution (21), equation (23) remains in force if there are replaced: ρ7 → ψ1, ρ8 → ψ5.
The new algebraic system includes 16 real unknowns representing real and imaginary parts of
C1–C8. Components of the forced vibration can be evaluated and subsequently also absolute
values of displacements or forces. It should be noted that the relevant determinant never reaches
zero, unless ω is admitted also to be complex. In such a case true eigen-values in Gaussian plane
can be evaluated as ωj = ωrj + iωij . Hence amplitudes of forced vibration exhibit on the real
axis ω a certain maximum indicating only that in the proximity exists an adjoint eigen-value of
the non damped system.

4.2. Special configuration of structural parameters of beams and damped interlayer

Analytical considerations of the previous subsection 4.1 are evaluated numerically in order to
become aware of a quantitative influence of the interlayer viscous damping. The excitation is
due to the unit shear force at the top of the primary beam. Three interlayer stiffnesses have been
choosen c(j) = 24, 81, 162Nm−2 (j =1–3). Every stiffness has been evaluated for four values of
the damping: b = 0, 1, 2, 7Nsm−2. Results are plotted in Fig. 10a–f. Pictures (a), (b) concern the
stiffness c(1) = 24 Nm−2, in particular picture (a) represents absolute value of the top deflection
|v1(l)| while picture (b) regards the phase shift f(l) in the same point. Curves plotted in various
colors demonstrate results for individual values of the damping b. Similarly are organized also
pictures (c), (d) and (e), (f), respectively. Interval ω = (0, 2.0) has been examined and therefore
the system behavior in area of the first odd and even eigen-values has been demonstrated.

It is apparent that the position of the first odd eigen-value remained untouched, as the damping
element did not in fact involve. Hence also the phase shift reveals a sudden jump of 180◦ in the
point ω7(1) = 1.2309 rad s−1 independently from the interlayer stiffness. The neighborhood of
the first even eigen-value ω8(1) = 1.5796 rad s−1 (c = 162 Nm−2) has a character as commonly
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Fig. 10. Absolute value of the top deflection |v1(l)| and phase shift f(l) for various interlayer stiffness c
and damping ratio b: (a)–(b) c = 24 Nm−2, (c)–(d) c = 81 Nm−2, (e)–(f) c = 162 Nm−2

known at 2DOF system with a viscous damping. Between both eigen-values lies zero or a
minimum of the system response |v1(l)|. Similarly like on a 2DOF discrete system also here the
response passes zero only if the damping vanishes, otherwise only a certain positive wave is
exhibited which is getting to disappear with increasing damping level. Hence here is a domain
of optimization of the vibration damping effect. Take a note, that the careful tuning is necessary,
as this mechanism is exactly valid for distinctly expressed deterministic excitation frequency,
while in practice we encounter the broad band excitation (mostly of the random type).

It is obvious that the damping effect is slightly increasing with raising stiffness of the
interlayer, however also this fact should be handled with caution. Take a note that the system
behaves similarly also in area of higher couples of eigen-values, although the sensitivity to
parameters and tuning is higher.

5. Conclusion

The pair of beams with continuously distributed stiffness, mass and other parameters connected
together by visco-elastic layer can be considered as a mechanism suitable to be used for sup-
pression of structural vibration similarly like the tuned mass damper. The strength of the system
with continuously distributed parameters consists in the fact that it can act in a wide frequency
domain due to advantageous distribution of eigen-values on the frequency axis.
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Detailed analysis has been performed for the special configuration of parameters and boun-
dary conditions. In particular both beams have a character of a console and identical ratio of
bending stiffness and mass. This composition makes possible to separate distinctly eigen-values
into two groups: (i) odd – independent on the interlayer stiffness and (ii) even – being signifi-
cantly influenced by this one. Each one of the latter group is able to work approximately as an
independent vibration absorber. This scheme enabled to carry out a comprehensive analysis of
interaction of system parts in a wide frequency domain.

Numerical evaluation of analytical results as presented in this paper has been step by step
verified with those obtained by means of independent FEM analysis. Coincidence was perfect
and thus challenging to continue this research.

Let us take a note that other combinations of boundary conditions and parameters being
outside settings discussed here do not enable the full separation of dynamic parameters like
those investigated in the paper. The aim of the paper was essentially to show qualitative cha-
racter of system consisting of two beams with visco-elastic interlayer. General combinations
of parameters require to deal with full 4th order characteristic equation. Therefore perturbation
strategies should be used separating the original system into several disjoint groups which
should be analysed independently. The same holds regarding general combination of boundary
conditions. On the other hand it reveals that differences are only quantitative although more
steps are necessary to be performed on numerical basis and consequently a careful assessment
of approximate solutions applicability is to be done. Nevertheless the system keeps the basic
character of dynamic properties. Analytical results obtained are in force and remain applicable
to tune and optimize the damping effect.
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