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Abstract

This paper deals with the optimization method called particle swarm optimization and its usage in mechanics. Basic
versions of the method is introduced and several improvements and modifications are applied for better convergence
of the algorithms. The performance of the optimization algorithm implemented in an original in-house software
is investigated by means of three basic and one complex problems of mechanics. The goal of the first problem
is to find optimal parameters of a dynamic absorber of vibrations. The second problem is about the tunning of
eigenfrequencies of beam bending vibrations. The third problem is to optimize parameters of a clamped beam with
various segments. The last complex problem is the optimization of a tilting mechanism with multilevel control. The
presented results show that the particle swarm optimization can be efficiently used in mechanical tasks.
c© 2016 University of West Bohemia. All rights reserved.
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1. Introduction

In modern mechanics an optimization process is very important and common part of designing
dynamic systems and solving various problems. Different applications need various optimization
algorithms, which should be sufficiently set in order to effectively solve a problem. Optimal
parameters can make system less noisy, decrease amplitude of vibrations, make system cheaper
etc., so they can be essential in project realization.

Standard approaches to the numerical optimization are described e.g. in [10] while popular
genetic algorithms are employed e.g. in [17]. The disadvantages of these methods are related
to searching for local optimum only or to requiring differentiable functions. It can be overcome
by using methods of zero order, which do not use derivations of an objective function in
optimization process. One of these methods is called particle swarm optimization (PSO), which
has the ability to find global optimum of a given objective function. General review of various
PSO algorithms is given in [6] and their usage in global optimization is presented in [11].
Constrained problems and imposing of nonlinear limit functions are studied by authors of [12].
Multiobjective optimization using PSO is shown in [16]. In statics and strength of solids, the PSO
approaches are applied for example in shape optimization [7] or optimization of functionally
graded structures [9]. Interesting applications in dynamics are shown in [15] for a control of
maglev train levitation or in [5] for vibration isolation and control.
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This paper is divided into 7 sections. After introduction the basic PSO algorithms are descri-
bed together with their further improvements and with the verification of originally implemented
software. The third section deals with the optimization of a vibration absorber. Tunning of beam
eigenfrequencies is shown in the fourth section and the constrained optimization of a segmen-
ted clamped beam is described in the fifth section. The sixth section is devoted to a complex
mechanical example of the optimization of a tilting multilevel mechanism.

2. Particle swarm optimization

The basic PSO algorithm was introduced by James Kennedy and Russel C. Eberhart in the year
1995 [8]. It is based on a behaviour of animals (such as sheep, birds or fish) in flock or swarm.
Each individual in a swarm cooperates with others to find areas, where can be enough food or
something. All individuals in a swarm create a social behaviour, which leads to finding optimum
areas in a search space.

The PSO algorithm uses a swarm of sizens, which is made by individual particles represented
by vector xi(t) = [xi1, xi2, . . . , xin], where n is the dimension of a search space, i = 1, 2, . . . , ns

is the index of a particle and t is a discrete time with a constant step equal to 1. The position of
particle is changing due to vector of velocity vi(t) = [vi1, vi2, . . . , vin] according to equation [4]

xi(t+ 1) = xi(t) + vi(t+ 1). (1)

The initial position of particle xi(0) in the search space is random and is generated by the
uniform distribution. The initial velocity vi(0) is set to zero vector.

Each particle has a memory, where its best position found during the optimization is stored.
This position is called personal best or pbest, is represented by vector yi(t) = [yi1, yi2, . . . , yin]
and is calculated as

yi(t+ 1) =
{

yi(t) for f(xi(t+ 1)) ≥ f(yi(t)),
xi(t+ 1) for f(xi(t+ 1)) < f(yi(t)),

(2)

where f : Rn → R is an objective function, which determines the quality of a particle position.
Particles can cooperate with others and they form neighbourhoods. Inside a neighbourhood

the particles, which belongs to this neighbourhood, share information about their pbest positions.
The best position of all pbest positions in neighbourhood is called local best or lbest. The velocity
of a particle is based on the difference between an actual position and pbest and lbest positions.
There are two basic versions of the PSO algorithm, which differ in neighbourhood size and
structure. The first one is called Global Best PSO and the second one is called Local Best PSO.

2.1. Global Best PSO

In this version the neighbourhood is made by the whole swarm. It means, that all particles
cooperate with others and there is only one lbest position, which is called global best or gbest
and is represented by vector ŷ(t). The gbest position is defined as

ŷ(t) ∈ {y1(t), . . . ,yns(t)}|f(ŷ(t)) = min{f(y1(t)), . . . , f(yns(t))}. (3)

In the global best version the velocity in time step t+ 1 is calculated by equation

vij(t+ 1) = vij(t) + c1r1j(t)[yij(t)− xij(t)] + c2r2j(t)[ŷj(t)− xij(t)], (4)
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where vij(t) is velocity of particle i in direction j (j = 1, 2, . . . , n) in time step t, c1 and c2
are positive constants which indicate how much is the particle attracted by its pbest position
and gbest position, r1j(t) and r2j(t) are random values from 〈0, 1〉 generated by the uniform
distribution and representing a stochastic element of the algorithm.

2.2. Local Best PSO

In this version the neighbourhood is created by a chosen set of particles. The easiest way, how
to create the neighbourhood, is by indexes to vector x. The neighbourhood Ni of particle i is
defined as

Ni = {yi−nNi
(t),yi−nNi

+1(t), . . . ,yi−1(t),yi(t),yi+1(t), . . . ,yi+nNi
(t)}, (5)

where nNi
is the size of the neighbourhood. The lbest ŷi(t) position of neighbourhood i is

defined as
ŷi(t + 1) ∈ {Ni|f(ŷi(t+ 1)) = min{f(x)}, ∀x ∈ Ni}. (6)

The velocity is calculated by

vij(t+ 1) = vij(t) + c1r1j(t)[yij(t)− xij(t)] + c2r2j(t)[ŷij(t)− xij(t)]. (7)

The main advantage of this version is that the particles can explore the search space better
and can find better minimum than particles in global best version. The main disadvantage is that
it can take longer time to find satisfactory results. For less complex optimization problems, the
global best version is faster than local best version because of lower computational complexity.

2.3. Improvements and modifications of the basic PSO algorithm

The basic version of PSO usually does not provide satisfactory convergence to optimum. That
is why some improvements were applied. The goal of these modifications is to give particles
appropriate ration between so called exploration and exploitation ability. The good exploration
ability means, that the particles cover the whole search space during their life. This helps to find
optimum areas in the search space, but the particles are unable to focus on a global optimum. On
the other hand, the exploitation ability represents the effort of particles to concentrate on a small
area from the search space and find there the best solution. It is necessary to find an appropriate
balance between these two abilities. In the first half of the optimization process the particles
should have the good exploration ability and than the exploitation ability. Improvements will be
explained on the Local Best version of PSO.

The first modification is the introduction of an inertia weight. Inertia weight ω(t) indicates,
how much velocity in step t+1 depends on velocity in step t. Equation (7) should be changed to

vij(t+ 1) = ω(t)vij(t) + c1r1j(t)[yij(t)− xij(t)] + c2r2j [ŷj(t)− xij(t)]. (8)

The inertia weight decreases linearly with each time step (for example from ω(0) = 0.9 to
ω(nt) = 0.1, where nt is a maximum number of iterations). This modification grants better
exploitation of the algorithm during time steps and helps the particles to focus on accuracy of
global best position.

Next modification is called velocity clamping. The velocity can explode into large values in
few steps and the particles diverge from the search space. This can be solved by expression

vij(t + 1) =

{
v

′
ij(t+ 1), v

′
ij(t+ 1) < Vmax,j,

Vmax,j, v
′
ij(t+ 1) ≥ Vmax,j,

(9)
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where v
′
ij is calculated using equations (4) or (7) and Vmax,j is a problem dependent parameter.

The initial Vmax,j is chosen by equation

Vmax,j = δ(xmax,j − xmin,j), (10)

where xmax,j and xmin,j are maximum and minimum values of j component of variable x,
δ ∈ (0, 1〉 is a problem dependent constant. In this work, exponentially decreasing Vmax,j is used
according to the equation

Vmax,j(t+ 1) = (1− (t/nt)
α)Vmax,j(t), (11)

where α is another problem dependent constant, which can be found by testing the algorithm
and nt is a maximal number of iterations. Additional correction for velocity can be used based
on

vij(t+ 1) = Vmax,jtgh

(
v

′
ij(t+ 1)

Vmax,j

)
. (12)

More about this correction can be found in [4].
Last improvement is related to parameters c1 and c2, which can change during algorithm

according to

c1(t) = (c1,min − c1,max)
t

nt
+ c1,max, c2(t) = (c2,max − c2,min)

t

nt
+ c2,min, (13)

where e.g. c1,min = c2,min = 0.5 and c1,max = c2,max = 2.5. This will cause, that at the beginning
of the algorithm particles are more attracted by pbest position and at the end of the algorithm
are particles more attracted by lbest.

2.4. Benchmark example

The Levy No. 5 function (see Fig. 1) defined on search space 〈−10, 10〉 × 〈−10, 10〉 as

f(x, y) =
5∑

i=1

[i cos((i−1)x+i)]
5∑

j=1

[j cos((j+1)y+j)]+(x+1.425 13)2+(y+0.800 32)2 (14)

Fig. 1. Levy No. 5. function
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was used for testing the algorithm. This function has many local minima but only one global
minimum f(−1.306 8,−1.424 8) = −176.137 5 and it is designed as the benchmark for testing
of various algorithms. The goal was to find proper algorithm constants, which guarantee, that
the PSO method find global minimum with probability at least 99 percents. The algorithm
was launched many times and proper constants were found. The local best algorithm was
very effective with maximum number of iterations set to nt = 100, swarm size ns = 20,
neighbourhood radius n = 2, constant δ = 0.9 and constant α = 5. Figs. 2 and 3 show, that all
particles converge to one solution.

Fig. 2. x values of particles in iterations Fig. 3. y values of particles in iterations

3. Tuning of the dynamic vibration absorber model

The dynamic absorber of vibrations (Fig. 4) consists of matter m3 attached to mass m2 using
spring of stiffness k3 and damper of coefficient b3. Optimization parameters are x = [m3, b3, k3]
with lower barrier xd = [0.1, 10, 103] and upper barrier xh = [2, 500, 105]. The mechanical
system is excited by force

f2 = F2 sinωt. (15)

The mechanical system can be described by equation

Mq̈(t) +Bq̇(t) +Kq(t) = f(t), (16)

whereM is mass matrix,B is damping matrix andK is stiffness matrix and they can be formed
as

M =

⎡
⎣m1 0 0
0 m2 0
0 0 m3

⎤
⎦ , B =

⎡
⎣ b1 0 0
0 b3 −b3
0 −b3 b3

⎤
⎦ , K =

⎡
⎣ k1 + k2 −k2 0

−k2 k2 + k3 −k3
0 −k3 k3

⎤
⎦ . (17)

The chosen parameters of mechanical model are summarized in Table 1.
The amplitude q of steady dynamics response is defined as

f̃ =

⎡
⎣ 0
−iF2
0

⎤
⎦ , Z = −ω2bM+ iωbB+K, q̃ = Z−1f̃ , q = |q̃|. (18)
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Fig. 4. The mechanical system with dynamic ab-
sorber of vibrations

Fig. 5. Steady response q2 before and after optimi-
zation with PSO algorithm

Table 1. Known parameters of mechanical model

m1 = 10 kg k1 = 5 · 104 Nm−1 b1 = 100 Nsm−1

m2 = 7 kg k2 = 2 · 104 Nm−1 F2 = 50 N
m3 = 1 kg k3 = 104 Nm−1 b3 = 100 Nsm−1

The first task is to minimize amplitude of steady response q2 of mass m2 for constant excitation
frequency ω = 39 rad · s−1, which is related to one of original eigenfrequencies. The objective
function is f(x) = q2 The optimization process based on the PSO algorithm found optimum
parameters as x∗ = [m3, b3, k3] = [2, 10, 3.057· 103]. The algorithm with a swarm that contains
ns = 60 particles and neighbourhood radius n = 10 shows good convergence in about 150 time
steps.

The second task is to minimize average amplitude of steady dynamics response q2 for
band of frequencies 〈0, 150〉. The objective function is f(x) = 1

150

∑150
ωb=0

q2,ωb
for frequencies

ωb = 0, 1, 2, . . . , 150 rad · s−1. PSO algorithm found parameters x∗ = [2, 34.764, 2.767 · 103].
Very good convergence was reached with about ns = 30 particles, neighbourhood radius n = 10
and in about 100 time steps. The resulting steady response with comparison to the original one
is shown in Fig. 5.

4. Tuning of beam eigenfrequencies

Another studied mechanical system was a supported beam of length l = 1 m (Fig. 6).
The parameters of the beam are modulus of elasticity E = 2.1 · 105 MPa, mass density
ρ = 7 800 kg · m−3, height a [m], width b [m], cross-section area A = ab and moment of

Fig. 6. Supported beam and its parameters
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Fig. 7. Values of height a of particles in iterations Fig. 8. Values of width b of particles in iterations

inertia Iz = ba3/12. The equation for eigenfrequency Ωj in [Hz] is [3]

Ωj =

√
j4π4EIz
2πl4ρA

, j = 1, 2, . . . , N. (19)

The task is to tune the second eigenfrequency to Ω̄2 = 300Hz with the constraint that the weight
of te beam cannot exceed m0 = 2 kg. The objective function is formed as

f(x) =
(
1− Ω2(x)

Ω̄2

)2
+ p(m), p(m) =

{
0 form ≤ m0,
106 form > m0.

(20)

Optimization parameters are x = [x, y] = [a, b], lower limit xd = [0.01, 0.008], upper limit
xu = [0.05, 0.02]. The PSO algorithm has easily optimized this discontinuous objective function
using only ns = 20 particles with neighbourhood radius n = 4 in 80 time steps. The optimized
parameters are x∗ = [0.031 88, 0.008]. Fig. 7 and Fig. 8 show the motion of particles in each
direction of the search space.

5. Optimization of the beam with variable cross-section

The clamped beam is divided into five segments (see Fig. 9). The length of the beam is l = 5 m
and each segment is ls = 1 m long. The beam end is loaded by force F = 50 kN. The

Fig. 9. Clamped beam with segment dimensions Fig. 10. Displacement of the beam
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modulus of elasticity is E = 2.1 · 105 MPa, mass density ρ = 7 800 kg · m−3 and Poisson
constant ν = 0.3. The goal of this optimization is to minimize weight considering not exceeding
maximum displacement ymax = −0.05 m at the beam end. Due to known parameters, this
problem can be solved by finding optimal height hi and width bi (where i = 1, . . . , 5). The
second restriction is on the ratio between hi and bi of each segment. Equation hi/bi ≤ 20 must
be fulfilled. Vector of parameters is p = [h1, b1, h2, b2, . . . , h5, b5], the lower barrier for heights
is set to hi,min = 0.05m, lower barrier for widths is set to bi,min = 0.01m, upper barrier for both
heights and widths is set to hi,max = bi,max = 1 m.

The objective function is
f(p) = hTb+ p1 + p2, (21)

where h = [h1, . . . , h5]T is vector of heights, b = [b1, . . . , b5]T is vector of widths, p1 and p2 are
penalty functions. The displacement y of the beam is calculated using the finite element method.
The beam is divided into fifteen finite elements with three finite elements per each segment.
Penalty function p1 is formulated as

p1 =

{
0 for y ≥ ymax,
103 for y < ymax

(22)

and represents the condition of maximum displacement y. When the maximum displacement is
exceeded, the functional value of the penalty function raises by 103. The second penalty function
p2 is

p2 =

{
0 for hi/bi ≤ 20,
103 for hi/bi > 20

(23)

and it represents the condition to the ration between hi and bi of each segment. When hi/bi > 20
the functional value of the penalty function raises by 103. The objective function is therefore
discontinuous.

The PSO algorithm found optimized parameters as

p∗= [0.617 4, 0.030 9, 0.574 6, 0.028 7, 0.547 4, 0.028 0, 0.430 2, 0.021 6, 0.333 4, 0.016 7], (24)

the value of the objective function with optimized parameters is f(p∗) = 0.06577 and the
maximum displacement y = −0.025 m. These results are comparable with results published
in [1]. The PSO algorithm used ns = 100 particles with neighborhood radius n = 10 in 200
time steps.

6. Optimization of the controllability of a tilting lightweight multi-level mechanism

The idea behind this optimization example is the hierarchical motion control of lightweight
multi-level mechanisms consisting of the large motion level realized by cable driven parallel
mechanisms [2] and the small motion levels realized using active structures [13]. The final goal
of the optimization and control of multi-level structures is the widening of frequency bandwidth
of their feedback motion control. The superimposed active structures can improve the positioning
accuracy and operational speed of the end-effectors of recently developed cable driven parallel
mechanisms of different types.

Particularly the spherical redundantly actuated tilting mechanism is considered. It is prima-
rily actuated by four fibres and performs a spherical motion with three degrees of freedom [14].
The four fibres lead over pulleys to sliders with servo-drives (see Fig. 11). Active structure with
six piezoactuators [13] is integrated between the end-effector platform and auxiliary platform
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Fig. 11. Scheme of the 3 DOF tilting fibre mechanism with the 6 DOF active structure with piezoactuators

Fig. 12. Functional model of the 3 DOF tilting fibre mechanism with the 6 DOF active structure with
piezoactuators

suspended and moved by four fibres. The piezoactuators are mounted in the cubic configuration
(Fig. 12). The central spherical joint (Cardan universal joint) equipped with rotational incre-
mental sensors simultaneously ensures the measurement of the end-effector platform position.
The target of the optimization is the maximization of the end-effector platform controllability
using all available actuators. The large lower frequency components of motion are controlled
by the servo-drives through the fibres, whereas the small high frequency components of motion
are controlled by the piezoactuators.
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The optimization process should help to tune chosen mechanical properties of the system.
Namely the stiffness of piezoactuators and dimensions of the additional body are considered.
The cylindrical body is situated in the middle of the platform and described by its diameter and
height. Parameters of the optimization are stiffness of the piezoactuators denoted as p1 in range
〈4 · 106, 1.8 · 109〉 [N/m], diameter of the additional weight p2 in range 〈0.06, 0.20〉 [m] and
height of the additional weight p3 〈0.01, 0.1〉 [m].

The cost function C(p) is defined as the condition number (conditionality) of controllability
gramian Wc

C(p) = condWc = cond

(∫ ∞

0
eAτBBTeA

T τ dτ

)
, (25)

where B = B(p) and A = A(p) are matrices of the state space model of the linearized
system and depend on the optimization parameters. The global best optimization algorithm was
employed for the minimization of the objective function formed as

f(p) = (1− C(p))2 (26)

and thus for the maximization of the controllability.
During the optimization, it was observed that parameter p1 (stiffness of piezoactuators)

always reaches its lower boundary, while other two parameters converged to different local
extremes (Fig. 13). The contours of the criterion (C(p) function) in dependence on the end-
effector diameters for boundary value of p1 are shown in Fig. 14, where the big black dots
are representing the positions of particles in the last iteration. It can be seen that the particles
reached several different points, which are very close to local extremes. Fig. 14 also shows that
the objective function is very complex and therefore the algorithm for actual setting were not
able to find global optimum.

Fig. 13. Iteration history of the height and the diameter of the end-effector

7. Conclusions

The particle swarm optimization algoritm was presented in this paper. Several modifications and
improvements of the basic algorithm were described and it was the basis for the creating of the
in-house implementation in the MATLAB system. This implementation was further successfully
verified using typical example of the very complex Levy No. 5 function.
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Fig. 14. Countours of the criterion (controllability) with depicted particles

The main part of the paper was aimed at the algorithm testing on various examples from
mechanics. Three basic problems and one very complex problem of multilevel mechanism were
introduced. The PSO method has the ability to find global optimum of objective functions
and it can also optimize nondifferentiable functions. However, the PSO method requires more
objective function evaluations than gradient based methods, but in some problems it can show
better results in comparable times. The method is efficient in many optimization problems in
dynamics, where the global optimum is sought.
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