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Rotary oscillations of a micropolar fluid sphere
in a bounded medium
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Abstract

The present study examines the axisymmetric rotary oscillation of a micropolar fluid sphere in concentric spherical
cavity filled with Newtonian viscous fluid. A continuity of velocity components and stress together with the spin
vorticity relation are used at the interface between fluid-fluid regions. The torque exerted on the micropolar fluid
sphere is obtained analytically and the real and imaginary torque coefficients are presented graphically. The effect
of the micropolarity parameter, viscosity ratio and spin parameter on the torque are studied numerically. In the
limiting cases, the torque acting on the rotating micropolar fluid sphere and solid sphere in concentric spherical
cavity are obtained from the present analysis.
c© 2017 University of West Bohemia. All rights reserved.
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1. Introduction

The area of research concerning the oscillatory Stokes flows has continued to receive much
attention from investigators due to its numerous applications both in engineering and science.
These problems include the Brownian motion, ultra-filtration, biomechanics of blood flow and
other biological or chemical phenomena [24]. The oscillating cylindrical disk viscometer which
is used in measurement of fluid viscosity is the most prominent application of rotary oscillations
of axisymmetric bodies [24].

The classical Navier-Stokes theory has been proved to be inadequate to describe the behavior
of fluids with microstructure such as animal blood, body fluids, liquid crystals and lubricating
oils etc. In the past few years there has been increasing interest in developing theories that can
accurately describe the behavior of such fluids. The theory of micropolar fluids introduced by
Eringen [6, 7] is one of the best theories of fluids to describe the structured fluids. These fluids
consist of rigid particles which can rotate with their own spins and microrotations. Micropolar
fluids exhibit microscopic effects and can sustain couple stresses. There are two vectors in the
micropolar fluid theory which describe the motion of the fluid; the usual velocity vector and
the microrotation or spin vector. The applications of these fluids are in blood flow, lubrication
problem, colloidal suspensions, liquid crystals, occurrence of turbulence, polymeric additives
etc. The review article by Ariman et al. [3] and the book written by Lukaszewicz [15] provide
a useful account of the applications and theory of micropolar fluids.

The oscillatory Stokes flow problem has been studied analytically and numerically by
various researchers. The first study undertaken of an oscillatory flow problem was done by
Stokes [22]. The author has studied the flow due to the longitudinal oscillations of a sphere
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in an incompressible viscous fluid. Kanwal [10] used the Stokes stream function to study the
rotatory and longitudinal oscillations of various axisymmetric bodies like a sphere, a circular
disk, an infinite circular cylinder, an oblate spheroid and a prolate spheroid. Lamb [14] has
studied the rotatory oscillations of a sphere bounded by another concentric sphere. Tekasakul
et al. [24] investigated the problem of rotatory oscillation of axisymmetric body in viscous
fluid numerically for no-slip boundary condition. They evaluated the torque acting on the body.
Tekasakul and Loyalka [23] extended the work of Tekasakul et al. [24] into the slip regime.
They studied the effect of slip on the torque exerted on the oscillating spheres and spheroids and
found that slip reduces the torque in all cases.

Lakshmana Rao and Iyengar [13] examined the rotary oscillation of a spheroid in an incom-
pressible micropolar fluid. The rectilinear and rotary oscillation of a sphere along a diameter in
micropolar fluid was studied by Lakshmana Rao and Bhujanga Rao [12]. Srinivasacharya and
Iyengar [20] studied the problem of rotary oscillations of an approximate sphere in a micropolar
fluid. Iyengar and Vani [9] investigated the rotary oscillatory flow of an incompressible micropo-
lar fluid confined between two concentric spheres. They evaluated the analytical expressions for
velocity and microrotation components and the couple exerted on the outer and inner spheres.
The problem of an incompressible micropolar fluid flow generated by the rotary oscillations of a
permeable sphere was investigated by Aparna and Murthy [2]. The axisymmetric rectilinear and
rotary oscillations of a spheroidal particle in an incompressible micropolar fluid were studied
by Sherief et al. [19]. They evaluated the drag and couple for prolate and oblate spheroids. Re-
cently, the problem of the rotary oscillation of a composite sphere consisting of an impermeable
sphere enclosed by a porous shell in an incompressible Newtonian fluid bounded by a concentric
spherical cavity was investigated by Ashmawy [4] using the stress jump condition and the slip
boundary condition.

The study of oscillations of solid bodies in an axisymmetric incompressible viscous or
micropolar fluids have been attempted by many authors and the value of the couple has been
evaluated. This couple is needed in designing and calibration of viscometers. Also, a sound
knowledge of the movement of a single liquid drop in another immiscible liquid is required
for many natural, industrial and biological processes. And there is no previous work dealing
with the flow generated by the rotary oscillation of a micropolar fluid sphere in concentric
spherical container containing Newtonian viscous fluid. This motivated us to investigate the
present problem. The results of this study are useful in measurement of fluid viscosity and this
type of studies is important in the case where oscillation occurs inside another axisymmetric
body.

In this paper, we study the flow generated by the oscillatory rotational motion of a micro-
polar fluid sphere in Newtonian fluid bounded by concentric spherical container. The boundary
conditions used at the liquid-liquid interface are the continuity of velocity components, the
continuity of stress components and the spin vorticity relation. An analytic expression for the
torque exerted on the micropolar fluid sphere has been obtained and its variation with various
fluid parameters is studied.

2. Formulation of the problem

Consider the oscillatory rotational motion of an incompressible micropolar fluid sphere of
radius a in an incompressible Newtonian fluid bounded by concentric spherical container of
radius b (see Fig. 1). It is assumed that the micropolar fluid sphere is rotating about z-axis with
angular velocity Ωeiωt, i =

√
−1, where Ω is a constant and ω is the frequency of oscillation.

34



K. P. Madasu et al. / Applied and Computational Mechanics 11 (2017) 33–46

Fig. 1. Geometry of the problem

The region outside and inside the micropolar fluid sphere are denoted by regions I and II,
respectively. The equations of motion governing the flow in region I are

∇ · �q (1) = 0, (1)

∇p(1) + μ1∇×∇× �q (1) = −ρ
∂�q (1)

∂t
, (2)

where �q (1) is the velocity, p(1) is the pressure, μ1 is the coefficient of viscosity and ρ is the fluid
density.

The equations governing the unsteady flow of an incompressible micropolar fluid with the
absence of body force and body couple under the Stokesian assumption in region II are given
by

∇ · �q (2) = 0, (3)

∇p(2) + (μ2 + κ)∇×∇× �q (2) − κ∇× �ν = −ρ
∂�q (2)

∂t
, (4)

κ∇× �q (2) − 2κ�ν − γ0∇×∇× �ν + (α0 + β0 + γ0)∇∇ · �ν = ρj
∂�ν

∂t
, (5)

where �q (2), �ν, p(2) and ρ are velocity vector, microrotation vector, pressure and density of fluid,
μ2 is the viscosity coefficient of the classical viscous fluid and κ, α0, β0 and γ0 are the viscosity
coefficients for the micropolar fluids. The new viscosity coefficient κ is called as micropolarity
parameter. This allows us to measure the deviation of flows of micropolar fluids from that of
the Navier-Stokes model. Also when this viscosity coefficient becomes zero, the conservation
law of the linear momentum becomes independent of the presence of the microstructure.

The constitutive equations for the stress tensor tij and the couple stress tensor mij are given
as

tij = −pδij + μ2(qi,j + qj,i) + κ(qj,i − εijmνm), (6)
mij = α0νm,mδij + β0νi,j + γ0νj,i, (7)
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where the comma denotes the partial differentiation, δij and εijm are the Kronecker delta and
the alternating tensor.

Let (r, θ, φ) denote a spherical polar co-ordinate system with origin at the center of a
micropolar fluid sphere r = a. The motion is axially symmetric about z-axis, thus all the
quantities are independent of φ. We then choose the velocity vectors and pressures in both the
regions and microrotation vector in region II as

�q (i) = q
(i)
φ (r, θ)e

iωt�eφ, i = 1, 2, (8)

�ν = νr(r, θ)e
iωt�er + νθ(r, θ)e

iωt�eθ, (9)
p(i) = p(i)eiωt, i = 1, 2. (10)

Assume that div �ν = g(r, θ)eiωt and curl �ν = h(r, θ)eiωt �eφ.
Therefore, the field equations in this case reduce to:

For the viscous fluid region a ≤ r ≤ b,

∂p(1)

∂r
= 0,

∂p(1)

∂θ
= 0, (11)

(L − l2)q(1)φ = 0, (12)

where

l2 =
iρωa2

μ1
,

and for the micropolar fluid region r ≤ a,

∂p(2)

∂r
= 0,

∂p(2)

∂θ
= 0, (13)(

L − iρω

μ2 + κ

)
q
(2)
φ =

−κ

μ2 + κ
h(r, θ), (14)

νr =
1
c2

∂g

∂r
− γ0
2κ+ ijρω

1
r

(
∂h

∂θ
+ hcot θ

)
+

κ

2κ+ ijρω

1
r

(
∂q
(2)
φ

∂θ
+ q

(2)
φ cot θ

)
, (15)

νθ =
1
c2
1
r

∂g

∂θ
+

γ0
2κ+ ijρω

(
∂h

∂r
+

h

r

)
− κ

2κ+ ijρω

(
∂q
(2)
φ

∂r
+

q
(2)
φ

r

)
. (16)

From (15) and (16), we have (
∇2 − c2

)
g = 0. (17)

Also (
L − 2κ+ ijρω

γ0

)
h =

κ

γ0
Lq
(2)
φ , (18)

where

c2 =
(2κ+ ijρω)a2

α0 + β0 + γ0
,

L = ∇2 − 1

r2 sin2 θ
, ∇2 = ∂2

∂r2
+
2
r

∂

∂r
+
1
r2

∂2

∂θ2
+
cot θ
r2

∂

∂θ
.
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Using (14) and (18) we have[
L2 −

(
κ(2μ2 + κ) + iρω(γ0 + jμ2 + jκ)

γ0(μ2 + κ)

)
L+

ρω(2κi − jρω)
γ0(μ2 + κ)

]
q
(2)
φ = 0. (19)

This equation can be rewritten as

(L − m2)(L − n2)q(2)φ = 0, (20)

where

m2 + n2 =
(κ(2μ2 + κ) + iρω(γ0 + jμ2 + jκ)) a2

γ0(μ2 + κ)

and

m2n2 =
ρω(2κi − jρω)a4

γ0(μ2 + κ)
.

3. Boundary conditions

To obtain the complete solution of the problem, we assume the continuity of velocity compo-
nents. Also we assume as in the classical case [8], that the equilibrium theory of interfacial
tension is applicable to our problem. This means that the presence of interfacial tension only
produces a discontinuity in the normal stresses and does not in any way affect the tangential
stresses. The latter is therefore continuous across the surface of the fluid sphere. Hence, con-
tinuity of tangential stresses is applied at the interface. There in no general agreement for the
microrotation boundary condition in the literature. Migun [17] investigated various types of
boundary conditions for microrotation. Aero et al. [1] proposed a dynamic boundary condition
for microrotation which states that the microrotation is proportional to the couple stress at
the boundary. Condiff and Dahler [5] suggested a spin vorticity kinematic boundary condition
which states that the microrotation is proportional to the vorticity. In the present study we apply
the spin vorticity relationship at the boundary. These conditions are physically realistic and
mathematically consistent [5, 8, 9, 16].

The boundary conditions on the surface r = a are

i. Continuity of velocity components

q
(1)
φ = q

(2)
φ . (21)

ii. Continuity of tangential stress components

t
(1)
rφ = t

(2)
rφ . (22)

iii. Spin vorticity relation

νr =
s

2r

[
∂q
(1)
φ

∂θ
+ q

(1)
φ cot θ

]
, (23)

νθ = −s

2

[
∂q
(1)
φ

∂r
+

q
(1)
φ

r

]
, (24)
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where s is a spin parameter that varies from 0 to 1. The value s = 0 (no spin) corresponds
to the case where microelements close to a solid boundary are unable to rotate, whereas
the value s = 1 corresponds to the case where the microrotation is equal to the fluid
vorticity at the boundary. This parameter is assumed to depend only on the nature of the
fluids.

The boundary condition on the surface r = b is

iv. On the container surface
q
(1)
φ = −Ωr sin θ. (25)

4. Solution of the problem

Using the method of separation of variables, the solution of (12) and (17) are given respectively

q
(1)
φ =

[
r−1/2K3/2(lr)c1 + r−1/2I3/2(lr)d1

]
sin θ, (26)

g(r, θ) = r−1/2I3/2(cr)e1 cos θ. (27)

The solution of (20) is obtained by superposing the solutions of

(L − m2)q(2)φ = 0, (28)

(L − n2)q(2)φ = 0, (29)

and again using the method of separation of variables, we get

q
(2)
φ =

[
r−1/2I3/2(mr)a1 + r−1/2I3/2(nr)b1

]
sin θ, (30)

where a1, b1, c1, d1 and e1 are arbitrary constants to be evaluated by applying the boundary
conditions (21)–(25). Using (14) and (30) we get

h(r, θ) = −
[
a1r

−1/2
(

m2(μ2 + κ)− iρω

κ

)
I3/2(mr)+

b1r
−1/2

(
n2(μ2 + κ)− iρω

κ

)
I3/2(nr)

]
sin θ. (31)

Thus, using the expressions for g, h and q
(2)
φ in (15) and (16), the expressions for νr and νθ are

obtained as

νr =

[
− 1

c2
1

r3/2
(
2I3/2(cr)− crI1/2(cr)

)
e1+

2
r3/2

(
a1I3/2(mr)Am + b1I3/2(nr)An

)]
cos θ, (32)

νθ =

[
− 1

c2
1

r3/2
I3/2(cr)e1 +

1
r3/2

a1Am

(
I3/2(mr)− mrI1/2(mr)

)
+

1
r3/2

b1An

(
I3/2(nr)− nrI1/2(nr)

)]
sin θ, (33)

where

Am =
γ0m

2(μ2 + κ) + κ2 − γ0iρω

κ(2κ+ ijρω)
and

An =
γ0n

2(μ2 + κ) + κ2 − γ0iρω

κ(2κ+ ijρω)
.
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5. Torque on the body

The torque exerted by the Newtonian fluid on micropolar fluid sphere is given by

T = 2πa3
∫ π

0
t
(1)
rφ |r=1 sin2 θ dθ, (34)

where the shear stress of the Newtonian fluid (region I) is given by

t
(1)
rφ = μ1

[
∂q
(1)
φ

∂r
−

q
(1)
φ

r

]
eiωt. (35)

After some calculations, (34) reduces to

T =
8
3

πμ1Ωa3(−K ′ − iK)eiωt =

−8
3

πμ1Ωa3
[
c1(3K3/2(l) + lK1/2(l)) + d1(3I3/2(l)− lI1/2(l))

]
eiωt, (36)

where K ′ and K are the real and imaginary torque coefficients, respectively. Thus, the real and
imaginary parts of the torque are, respectively, given by

�T =
8
3

πμ1Ωa3 (K sinωt − K ′ cosωt) , �T = −8
3

πμ1Ωa3 (K cosωt+K ′ sinωt) . (37)

5.1. Special cases

i. The case of slow steady rotation of a micropolar fluid sphere is obtained from the above
analysis by allowing the period of oscillation 2π/ω tend to infinity. Using

lim
ω→0
(m2 + n2) = m21, lim

ω→0
(m2n2) = 0, (38)

where

m21 =
κ(2μ2 + κ)a2

γ0(μ2 + κ)
.

So we take m = m1, n = 0 and l = 0. We get

T = −8πμ1Ωa3χ(1− s)Δ1/Δ2, (39)

where

Δ1 =
(
3(3 + 2χ)I3/2(m)− m(1 + χ)I1/2(m)

)
I3/2(c)− c(2 + χ)I3/2(m)I1/2(c), (40)

Δ2 = I3/2(c)
(
2l(1 + χ)I1/2(l)(3λ(2 + χ)− χ(1− η3)(1− s)) + 3I3/2(l)χ(

4χ+ 6− sχ − 3λ1(2 + χ)− 2η3(1− s)(3 + 2χ)
))
+ c(2 + χ)I1/2(c)

(−3λlI1/2(l)(1 + χ) + I3/2(l)(λ(3 + 6χ)− (s+ 2− 2η3(1− s))χ)), (41)

m2 =
κ(2μ2 + κ)a2

γ0(μ2 + κ)
=

κ(2 + χ)a2

γ0(1 + χ)
, c2 =

2κa2

α0 + β0 + γ0
, χ =

κ

μ2
,

λ1 =
2σ
2 + χ

, σ =
μ1
μ2

, η =
a

b
.

This result agrees with the result previously obtained by Madasu and Gurdatta [16].
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ii. When s → 0 and σ → 0, the expression for the torque in case of rotary oscillation of a
solid sphere in a concentric spherical cavity of viscous fluid is obtained as

T =
8πμ1a

3Ω
(
I3/2(l)K1/2(l) + I1/2(l)K3/2(l)

)
lη−3/2

3
(
I3/2(l)K3/2(lη−1)− I3/2(lη−1)K3/2(l)

) eiωt. (42)

This agrees with the result obtained by Ashmawy [4] in case of no slip condition.

iii. When s → 0 and χ → 0, the expression for the torque in case of rotary oscillation of a
viscous fluid sphere in another immiscible viscous fluid is obtained as

T = 8πμ1a
3Ω

[(
I3/2(l)K1/2(l) + I1/2(l)K3/2(l)

)
lη−3/2

Δ3

]
eiωt, (43)

where

Δ3 = 3(1− λ)
(
I3/2(l)K3/2(lη

−1)− I3/2(lη
−1)K3/2(l)+

lλ
(
I1/2(l)K3/2(lη

−1) + I3/2(lη
−1)K1/2(l)

))
. (44)

iv. When ω → 0 in (42), the expression for the torque in case of slow steady rotation of a
solid sphere in spherical container is obtained as

T = −8πμ1a
3Ω

1− η3
. (45)

This agrees with the result previously obtained by Keh and Lu [11], Saad [18], Srinivasa-
charya and Krishna Prasad [21].

6. Results and Discussion

The variations of the torque coefficients K ′ and K with the ratio of viscosities between internal
and external fluid σ and frequency parameter ω1 = ρωa2/μ2 are shown in Figs. 2–7 for different
values of the spin parameter s, micropolarity parameter χ and separation parameter η. During

(a) Variation of K ′ with σ (b) Variation of K with σ

Fig. 2. Variation of the torque coefficients versus viscosity ratio σ for different values of s with η = 0.6
and χ = 2

40



K. P. Madasu et al. / Applied and Computational Mechanics 11 (2017) 33–46

(a) Variation of K ′ with σ (b) Variation of K with σ

Fig. 3. Variation of the torque coefficients versus viscosity ratio σ for different values of s with η = 0.6
and χ = 5

numerical calculations we assumed the value of j/a2 = 0.2, α0/(μ2a2) = 0.1, β0/(μ2a2) = 0.2,
γ0/(μ2a2) = 0.3 and ω1 = 1.

Figs. 2 and 3 illustrate the graphical representation of K ′ and K with viscosity ratio σ for
different values of s with η = 0.6 for the case of χ = 2 and χ = 5, respectively. The torque
coefficient K ′ is greater for no spin condition, whereas the torque coefficient K is smaller for no
spin condition. It can also be perceived from the figures that the torque coefficient K ′ reaches a
constant value as σ tends to infinity. As σ → 0, the problem reduces to the rotary oscillation of
solid sphere in concentric spherical container.

The influence of micropolarity parameter on the torque coefficients K ′ and K are shown in
Figs. 4 and 5. When the micropolarity parameter χ → 0, both the fluids (in the container and
in the cavity) are Newtonian and the torque acting on the viscous fluid sphere rotating steadily
in concentric spherical container is obtained by taking the period of oscillation 2π/ω tend to
infinity. In this case the torque exerted on the fluid sphere is zero. These figures indicates that the

(a) Variation of K ′ with σ (b) Variation of K with σ

Fig. 4. Variation of the torque coefficients versus viscosity ratio σ for different values of χ with η = 0.6
and s = 0.2
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(a) Variation of K ′ with σ (b) Variation of K with σ

Fig. 5. Variation of the torque coefficients versus viscosity ratio σ for different values of χ with η = 0.6
and s = 0.6

(a) Variation of K ′ with σ (b) Variation of K with σ

Fig. 6. Variation of the torque coefficients versus viscosity ratio σ for different values of η with s = 0.6
and χ = 5

(a) Variation of K ′ with ω1 (b) Variation of K with ω1

Fig. 7. Variation of the torque coefficients versus frequency parameter ω1 for different values of s with
η = 0.6, σ = 2, and χ = 5
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torque coefficient K ′ of the classical viscous fluid is smaller than that of micropolar fluid. Where
as the torque coefficient K of the classical viscous fluid is larger than that of micropolar fluid.
Also, torque coefficient decreases with increasing viscosity ratio. Fig. 6 depicts the variation of
torque coefficients versus viscosity ratio σ for different values of the separation parameter η. It
can be seen from the figure that the torque coefficients decreases as viscosity ratio increases and
increases with the increase of the separation parameter. Fig. 7 shows the graphical representation
of torque coefficients with frequency of the oscillations ω1. It indicates that the torque coefficients
decreases with the increase of the frequency parameter.

7. Conclusions

In this paper, we presented the analytical solution for the rotary oscillations of a micropolar fluid
sphere in a concentric spherical cavity containing Newtonian fluid. The explicit expressions
of flow fields are determined by applying the boundary conditions at the container and cavity
surfaces. An expression for the torque acting on the micropolar fluid sphere is obtained in terms
of two real parameters K and K ′. Some well known results reported in the literature are also
found from the present problem in the limiting cases. The torque acting on the rotary oscillating
sphere decreases as the viscosity ratio increases. The real torque coefficient increases with
increase in micropolarity parameter, but reverse effect is seen for imaginary torque coefficient.
The effect of spin parameter on torque is also studied. It is found that the increase in spin
parameter results in decrease of real torque coefficient and an increase of imaginary torque
coefficient. We also found that the torque coefficient K ′ of a micropolar fluid is larger than that
of classical fluid while the torque coefficient K of a micropolar fluid is smaller than that of
classical fluid.

A Appendix

Applying boundary conditions (21)–(25) on (26), (30), (32) and (33) gives the following al-
gebraic system of equations for the determination of the arbitrary constants a1, b1, c1, d1 and
e1:

[a1T4 + b1T6 − c1S2 − d1T2]P
1
1 (ζ) = 0, (46)[

a1 (2T4 − mT3) + b1 (2T6 − nT5) + a1N2T4 + b1N2T6 + c−2e1N1T8−
−a1N1Am (T4 − mT3)− b1N1An (T6 − nT5)−

λc1(3S2 + lS1)− λd1(3T2 − lT1)]P
1
1 (ζ) = 0, (47)[

2a1AmT4 + 2b1AnT6 + c−2e1w2 − sc1S2 − sd1T2
]
P 11 (ζ) = 0, (48)[

a1Am (T4 − mT3) + b1An (T6 − nT5)− c−2e1T8 −
s

2
c1 (S2 + lS1)−

s

2
d1 (T2 − lT1)

]
P 11 (ζ) = 0, (49)[

c1η
1/2S3 + d1η

1/2T9 + η−1]P 11 (ζ) = 0. (50)

Solving this algebraic system of equations, we get the expressions for a1, b1, c1, d1 and e1

a1 = w1 [cl(2Anλ+ s(−2 + AnN1 − N2 + 2λ))T6T7 + ls(4 + 2N2 − N1s − 6λ)T6T8+
l(s − AnN1s − 2Anλ)cT5(cT7 − 2T8)] /Δ, (51)

b1 = w1 [cl(2Amλ+ s(−2 + AmN1 − N2 + 2λ))T4T7 + ls(4 + 2− N2s − 6λ)T4T8+
l(s − AmN1s − 2Amλ)mT3(cT7 − 2T8)] /Δ, (52)
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c1 = [(4 + 2N2 − N1s − 6λ)w2w3T2 + (−lsm+ Aml(N1s+ 2λ)m)T1T3T6w2+

(lsn − Anl(N1s+ 2λ)n)T1T4T5w2 + 2mnT2T3T5(An − Am)w2 − 2cT2T7w4 +
csT2T7w5 + c(4 + 2N2 − N1s − 6λ)T2T7T4T6(An − Am) + cl(N1s+ 2λ)

T1T7T4T6(Am − An)] /Δ, (53)
d1 = [(4 + 2N2 − N1s − 6λ)w2w3S2 + (lsm − Aml(N1s+ 2λ)m)S1T3T6w2+

(−lsn + Anl(N1s+ 2λ)n)S1T4T5w2 + 2mnS2T3T5(An − Am)w2 − 2cS2T7w4 +
csS2T7w5 − c(4 + 2N2 − N1s − 6λ)S2T7T4T6(An − Am) +

cl(N1s+ 2λ)S1T7T4T6(Am − An)] /Δ, (54)
e1 = −w1c

2l [s(4 + 2N2 − N1s − 6λ)(An − Am)T4T6 + (Am(2An − s)(N1s+ 2λ)m+

s(−2Anm+ sm))T3T6 + (s − AnN1s − 2Anλ)(2Am − s)nT4T5)] /Δ, (55)

where

Δ = η3/2 [cl(N1s+ 2λ)(Am − An)T4T6T7w6 + c (4 + 2N2 − N1s − 6λ)×
(Am − An)T4T6T7w7 + slw2w5w6 − l(N1s+ 2λ)w2w3w6 + 2cT7w4w7 −
−csT7w5w7 − (4 + 2N2 − N1s − 6λ)w2w3w7 + 2mn(Am − An)T3T5w2w7] , (56)

λ =
σ

1 + χ
, N1 =

χ

1 + χ
, N2 =

1
1 + χ

, η =
a

b

with σ = μ1
μ2

is the classical ratio of viscosities between the internal and external fluids.

w1 = T2S1 + T1S2, w2 = cT7 − 2T8,

w3 = mAmT3T6 − nAnT5T4, w4 = mAnT3T6 − nAmT5T4,

w5 = mT3T6 − nT5T4, w6 = T9S1 + T1S3,

w7 = T2S3 − T9S2,

S1 = K1/2(l), S2 = K3/2(l), S3 = K3/2(lη−1),

T1 = I1/2(l), T2 = I3/2(l), T3 = I1/2(m),

T4 = I3/2(m), T5 = I1/2(n), T6 = I3/2(n),

T7 = I1/2(c), T8 = I3/2(c), T9 = I3/2(lη−1).
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