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Determination of group velocity of propagation of Lamb waves in
aluminium plate using piezoelectric transducers
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Abstract

A prior knowledge of group velocities of Lamb wave modes is a key for analysis of time signals in guided-
wave based structural health monitoring. The identification of multiple wave modes may be complicated due to
dependency of group velocity on frequency (dispersion). These dependencies for infinite plate of constant thickness
can be calculated by a numerical solution of analytic equation. Two alternative approaches to determine group
velocities of zero-order Lamb wave modes in aluminum plate were used in this work: Two-dimensional Fast
Fourier Transform (2D-FFT) and methods of time-frequency processing. 2D-FFT requires a high number of time
signals in equidistant points, therefore it was applied on data from finite element analysis of wave propagation in
the plate. Group velocities for chosen frequencies were also determined using wavelet transform (WT) of signals
as differencies of times of arrival measured by a pair of piezoelectric transducers. The results from 2D-FFT and
wavelet transform were compared to the analytic solution.
c© 2017 University of West Bohemia. All rights reserved.
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1. Introduction

Lamb waves attracted scientific interest in recent years due to their potential use in the structural
health monitoring (SHM, automated structural defect detection). They are a type of elastic waves
propagating in plates or hollow cylinders, so Lamb waves-based SHM can be successfully used
for shell structural parts (such as aircraft fuselage [3], pressure vessels, wind turbine blades etc.),
or for monitoring of pipelines.

Fig. 1. Coordinate system of the plate

Considering Lamb waves in plates, plane of particle motion is defined by the direction of
propagation and the normal to the plate (e.g. plane x-z in Fig. 1 with x as the direction of
propagation). In contrast to bulk waves existing in two wave modes (longitudinal, transverse
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Z. Lašová et al. / Applied and Computational Mechanics 11 (2017) 23–32

shear), Lamb waves have generally infinite number of modes. These modes are divided to
two groups: symmetric (Si) and antisymmetric (Ai), with respect to the middle plane. It is
advantageous to use low frequency range, where only two zero-order modes exist (denoted
as S0 and A0). With increasing frequency higher modes occur. The determination of group
velocities of the Lamb modes is the key for identification of waves reflected by a damage [13]
or to locate the sources of acoustic emission [12].

Lamb waves are dispersive, which means their group and phase velocities depend on
frequency. These dependencies for each Lamb wave mode are called dispersion curves and
can be calculated by numerical solution of Rayleigh-Lamb equation [5]

tan βd

tanαd
= −

[
4αβk2

(k2 − β2)

]±1

, (1)

where the exponent+1 refers to the symmetric modes and −1 to the antisymmetric modes. The
coefficients α, β are defined by

α =

√
ω2

c2L
− k2 and β =

√
ω2

c2T
− k2. (2)

In equations (1) and (2), ω is angular frequency, k is wavenumber, d is half-thickness of the
plate, cL is velocity of longitudinal wave and cT is velocity of transverse shear wave.

Rayleigh-Lamb equation applies on theoretical model of infinite isotropic plate of constant
thickness. An alternative method of approximation of dispersion curves applicable on any
isotropic thin-walled structure was developed: two-dimensional Fast Fourier Transform (2D-
FFT) presented by Alleyne and Cawley [1]. The input data for the 2D-FFT are time-records in
multiple positions along the direction of propagation of the wave. Input data can be collected
by measurement (by moving laser [4, 10] or air-coupled ultrasonic probe [6]) or by numerical
solution [2, 8]. In this work, finite element model of the cross-section of the plate was used to
collect data for 2D-FFT.

The dispersion curves for group velocities can be also determined for given frequencies
by direct measurement of time of arrival of single frequency components. In this case it is
advantageous to excite waves, in which this frequency component dominates. This can be
achieved by choice of proper actuating signal. From the signals collected by sensors, the
significant frequency component is separated by means of signal processing methods. Wavelet
Transform (WT) is preferred by most of authors [9,13], Wigner-Ville Distribution [14] or Short-
Time Fourier Transform [15] were also proposed. In this case wavelet transform was chosen,
because it provides best determination of time-of-arrival of acoustic event among mentioned
methods. This is thanks to variable size of window function (wavelet) and similarity of wavelet
function with actuated sine burst.

In this paper, dispersion curves were calculated by 2D-FFT of numerical results. Group
velocities for a set of input frequencies in range 100–500 kHz were determined by time-
frequency analysis of signals from piezoelectric transducers. Calculated and measured group
velocities were compared with the analytical dispersion curves.

2. Determination of dispersion curves by 2D-FFT

Due to the fact that Lamb waves are periodical both in temporal and spatial domain, two
dimensional Fast Fourier Transform (2D-FFT) can be used for transformation of time-spatial
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data to wavenumber-frequency domain. If x is the direction of propagation of Lamb waves,
2D-FFT is defined as

H(k, f) =
∫ ∞

−∞

∫ ∞

−∞
u(x, t)e−i(kx+t) dx dt, (3)

where f is frequency. The matrix u(x, t) is composed of time responses (displacements ux, uz)
in equidistant points along x. To achieve sufficient spatial resolution, a high number of these
“sensors” must be used.

Finite element model of the aluminum plate was created to collect the data for 2D-FFT. The
model was a cross-section x, z of the plate and plane strain was assumed, which corresponds
to the character of Lamb waves. The thickness 2d = 2 mm corresponded to an experimental
plate used later and the finite elements were four-node quadrilaterals of size 0.25 mm. Material
parameters of the plate are presented in Table 1. Static material parameters were used — tensile
modulus and Poisson’s ratio measured by a tensile test of set of 3 specimens cut from the plate.

Table 1. Material parametrs of the aluminum plate

Tensile modulus E [GPa] 69.2
Poisson’s ratio ν [–] 0.287
Density ρ [kg ·m−3] 2 600
Longitudinal wave velocity cL [m · s−1] 5 884
Shear wave velocity cS [m · s−1] 3 216

Abaqus Explicit v.6-14 was used for the simulation of wave propagation. The time increment
was set toΔt = 4.0×10−8 s. The model was loaded at one end by a time-dependent displacement
(Hann) pulse with duration 2.0 × 10−6 s (presented in Fig. 2). Its frequency spectrum was
sufficient to excite broadband frequency response.

Fig. 2. Exciting pulse and its frequency spectrum (normalised amplitudes)

It turned out to be advantageous to excite the zero-order symmetric and antisymmetric modes
separately. To excite unique mode, displacement-based load across the thickness was used. The
magnitudes of the displacement were determined by solution of Rayleigh-Lamb equation. Only
the dominant displacement directions were used as boundary conditions for each mode:

u0z(z) = Ak
sin βz

cosβh
+ 2

αβ sinαz

(k2 − β2) cosαh
(4)
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in the case of symmetric mode S0 and

u0x(z) = Aiβ
sin βz

sin βh
− 2k2 sinαz

(k2 − β2) sinαh
(5)

for antisymmetric mode A0.

Fig. 3. Deformation of cross-section of the plate for case of symmetric and antisymmetric modes

The deformation of cross-section of the plate for both cases is presented in Fig. 3. Time
histories of displacements at 4 096 nodes on the top surface of the plate were ordered as
columns of the matrix u(x, t). Longitudinal displacement ux was used for determination of
symmetric modes and transversal displacement uz for antisymmetric modes. In both cases, the
matrix u(x, t) was transformed by 2D-FFT to wavenumber-frequency domain and the resulting
matrices H(k, f) are visualised as colour plots in Fig. 4a–b. Elements with higher intensities
(darker shade of grey) indicate admissible combinations of frequency and wavenumber, i.e. they
approximately show the dispersion curves in k-f domain. In given frequency range 0–1 MHz,
zero-order symmetric mode S0 and antisymmetric modes A0 and A1 are clearly visible. For
comparison, theoretical dispersion curves (calculated by DCTool, a program for numerical
solution of Rayleigh-Lamb equation [7]) are superimposed to the 2D-FFT results, as is shown in
Fig. 4c–d. It is apparent that numerical results correspond very well with the analytic solution.

2D-FFT was also used for determination of group velocities. The group velocity generally
defined by

cg(n) =
∂ω

∂k
(6)

was calculated as a ratio of differences

cg(n) =
ωn+1 − ωn−1

kn+1 − kn−1
. (7)

The values of group velocities were determined for selected frequencies in range
100–500 kHz (to ensure the presence of zero-order modes only) with step of 10 kHz. The
wavenumbers were found from the maximum values in rows of matrix H(k, f) corresponding
to closest values of the given frequencies. The calculated group velocities are presented along
with experimental data in Fig. 9 in the next section.
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Fig. 4. Result of 2D-FFT and comparison with analytic solution: a) symmetric modes by 2D-FFT,
b) antisymmetric modes by 2D-FFT, c) analytic dispersion curves of symmetric modes and d) analytic
dispersion curves of antisymmetric modes superimposed on 2D-FFT

3. Measurement of group velocities

The measurement of Lamb waves group velocities was performed on a plate with dimensions
800×800×2mm, which was hanged on a frame by two elastic strings (as can be seen in Fig. 5)

Fig. 5. Measurement set-up: plate hanged on a frame with applied piezoelectric patches
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and secured in vertical position by a clip in the top left corner to minimize contact with the strings.
Three transducers were applied on the plate, an actuator and a pair of sensors placed along the
investigated direction of propagation. The transducers were piezoelectric patches, specifically
DuraAct P-876.SP1. Piezoceramic layer in these patches has dimensions 10× 10× 0.2 mm and
it is sealed in a protective plastic foil with dimensions 16×13×0.5mm. More specifications of
the transducers can be found in producer’s data sheet [16]. The actuator was placed in the centre
of the plate. The initial setup of sensors was d1 = 150 mm and d2 = 250 mm measured from
the actuator, but it had to be changed to d1 = 100 mm and d2 = 200 mm for some frequencies
to avoid overlay of incident and reflected wave packets. Therefore the transducers were bonded
to the plate by double-side adhesive tape, which allows their relocation without any damage of
the transducers or the plate. On the other hand, this way of attachment can impair quality of
recorded signals.

Excitation and recording of signals from piezoelectric transducers was preformed using
Acellent ScanSentry, which is specialized device for Lamb wave-based structural health moni-
toring. It operated with sampling frequency 12MHz both for actuator and sensors signals. The
data acquisition is one-channel, therefore the measurement from the pair of collocated sensors
was sequential.

For the measurement of group velocity of certain frequency, it is necessary to isolate this
frequency component from recorded signals. It is easier if wave packets with this frequency
carry the largest amount of energy. This could be achieved by a choice of an actuation pulse in
form of sine burst with this central frequency. It is preferred to reduce influence of geometric
dispersion on wave packets, as they are distorted to longer time span and their amplitudes
decrease significantly. One possibility is to use actuation pulse limited by window function,
e.g. multiplied by Hann window. As presented in [11], higher number of sine periods also
reduces the effect of dispersion, on the other hand the pulse lasts a longer period in time and
the wave packets may merge together in time signals. Hann-windowed 5-period sine burst (as
presented in Fig. 6) was chosen for all measurements. The central frequencies were set in range
of 100–500 kHz with step by 50 kHz. Measurements were repeated 3-times for each frequency
with very low variation of results.

Fig. 6. Actuating pulse: Hann-windowed 5-sine burst, the central frequency in this example is 200 kHz
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Fig. 7. Measured voltage signals from a pair of sensors and time history of frequency component
f = 200 kHz

The group velocities were determined from the difference of arrival times detected by the
pair of sensors in mutual distance 100 mm. To determine time of arrival of the wave modes, time
history of energy of significant frequency has to be separated. The temporal signals from both
sensors (Fig. 7a–b) were processed by wavelet transform and the time history of the frequency
component (Fig. 7c) was extracted as a corresponding row in the matrix of scalogram (absolute
value of the result of wavelet transform). Peaks of wavelet transform coefficient indicate a
passage of forward and reflected wave modes.

The propagation of zero-order modes in time and distance from actuator is presented in
Fig. 8. The group velocities were calculated from time of arrivals of incident wave packets. It
is quite easy to identify the fastest forward S0 mode, as it is the first significant peak in the
signal, followed by forward A0. The dotted lines connecting first two peaks in time signals were
prolonged to the edge of plate to identify wave packets reflected from the edge. Especially in
lower frequencies, forward mode A0 was overlaid by mode S0 reflected from the edge and for
these measurements the sensors were moved to positions d1 = 100 mm and d2 = 200 mm.
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Fig. 8. Propagation of zero-order wave modes through plate in time and travelled distance

The measured group velocities were compared to the results of 2D-FFT and analytic solution,
as is shown in Fig. 9. The group velocities from 2D-FFT data were calculated using relation
(7) and extrapolated by a polynomial. Results shows good precision in case of mode A0 mode
and some deviations in case of mode S0. These errors are caused mainly by precision in spatial
domain, which is given by number of evaluated nodes of the finite element model.

Fig. 9. Dependency of group velocity on frequency of zero-order modes calculated by analytic solution,
FEM + 2D-FFT and from measured data + wavelet transform
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Experimental results oscillate around theoretical dispersion curve with average difference
3.4% in case of S0 and 6.4% for mode A0. The reason for this is that the mode S0 is not very
dispersive in this frequency range and it can be easily found in time signals. On the other side
A0 is more dispersive in low frequency range, which is the likely source of errors. The influence
of dispersion decreases with increasing frequency.

4. Conclusion

Dispersion curves (group velocity dependent on frequency) of two zero-order Lamb wave modes
in aluminum plate were obtained by two methods: two-dimensional Fourier transform applied
on data from the finite element analysis and measurement using piezoelectric transducers.

2D-FFT provides well approximated dispersion curves in k-f domain, which correlate with
dispersion curves calculated by solution of Rayleigh-Lamb equation. The precision of calculation
of group velocity depends on number of “sensors” and time increment of input data, i.e. samples
for Fast Fourier Transform. In this case sufficient precision was achieved using 4 096 samples.

Measurement of group velocities by piezoelectric transducers and signal processing by
wavelet transform proves to be more accurate in frequencies with lower effect of geometric
dispersion. In case of symmetric mode S0 it oscillates around analytic curve with average
difference 3.4% and 6.4% in case of anti-symmetric mode A0.

Both proposed methods showed sufficient precision for identification of zero-order Lamb
wave modes in time signals by determination of their group velocity. Their main advantage is
applicability on a wider set of structures in comparison with analytical solution.
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