
Applied and Computational Mechanics 11 (2017) 115–128

Numerical investigation of heat and mass transfer processes in the
combustion chamber of industrial power plant boiler. Part 1.

Flow field, temperature distribution, chemical energy distribution
A. Askarovaa,b, V. Maximova, S. Bolegenovaa, S. Bolegenovaa,

A. Yergaliyevab,∗, P. Šafařı́kc
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Abstract

In the present paper, the furnace chamber of the BKZ-160 boiler of Almaty TPP-3 (Kazakhstan) has been calculated.
The thermal characteristics of the process were studied in the form of the distribution of temperature fields and
chemical energy, and the aerodynamics of the combustion chamber was also calculated. The type of fuel, its
elementary and fractional composition, exerts the greatest influence on the course of heat-mass exchange processes
and aerodynamics. The computational experiment was carried out with two models of particle size distribution: a
polydisperse fuel flame (the particle diameter varies from 10 to 120 μm) and monodisperse fuel flame (particle size
identical and equal to dp = 60 μm). Based on the results of the computational experiments, the main regularities in
the distribution of heat fluxes in the combustion chamber volume and flow aerodynamics were obtained. It is shown
that the greatest thermal load falls on the central region of the walls of the combustion chamber and the location of
the burner devices, which is typical for both mono- and polydisperse fuel flames. The temperature data obtained
as a result of the computational experiment showed better convergence with the empirical data obtained directly
at TPP-3. Aerodynamics of the flow for the two selected models of particle size distribution has insignificant
differences, but how they affect other characteristics of the process is one of the following tasks in view of the
authors. It should be noted that the calculation of the polydisperse fuel flame takes much more calculation time.
c© 2017 University of West Bohemia. All rights reserved.
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1. Introduction

In the study of a wide range of modern problems of science and technology, numerical simu-
lation of heat and mass transfer process is particularly important and has enormous practical
application [12]. Interaction of reacting flows is described by a complex system of nonlinear
partial differential equations. Indispensable effective method of theoretical study of such flows
is a numerical simulation [13]. Numerical modeling is sufficiently accurate and inexpensive way
to analyze complex processes that occur during combustion of the fuel in the combustion cham-
bers of real power plants, and it allows considering simultaneously the complex of processes
that are almost impossible to do, conducting in situ experiments [7].

However, today there are modern technologies for measuring temperature fields under ex-
treme conditions, which could not be done earlier. This technology (Acoustic gas temperature
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measurement system) became possible with the use of acoustic methods of temperature mea-
surement. So in the papers [10, 17, 19] detailed application of acoustic temperature sensors in
combustion chambers of real power plants was described. The operating principle of this system
is based on the realization of the functional dependence of the speed of sound on the temperature
of the medium through which it propagates. The temperature fields obtained by this method are
in good agreement with the results of numerical simulations carried out in the above-mentioned
papers.

However, a study of the complex of processes occurring during combustion of solid fuels is
still possible only with the help of numerical simulation methods. The results of which allow to
optimally solve scientific and project engineering tasks in this area (improvement, design of new
boilers; burners upgrade; development of multistage fuel combustion systems, optimization of
combustion processes and other) [5–7, 18]. At the present stage of development of the energy
industry, immediate consideration and resolution of environmental issues are required.

Due to the fact that for most countries the main sources of pollutant emissions into the
atmosphere are companies operating in the burning of low-quality raw materials as well as
with poorly equipped with flue gas cleaning systems, the problem of pollution of the Earth’s
atmosphere is an urgent, [3,9]. Environmentally hazardous emissions, which are products of coal
combustion reactions cause enormous damage to the earth’s ecosystem. It is therefore necessary
to carry out a detailed study of physical and chemical processes that occur during combustion
of energy fuels and to solve the problem of environmentally “pure” making use of coal.

For the better description combustion processes in the real three-dimensional physical-
chemistry system it is necessary to consider many factors such as particle size distribution, the
speed and temperature of the fuel mixture, a method of supplying fuel mixture, the effect of
turbulent fluctuations, multistage chemical reactions, heat exchange by radiation, multiphase
flows and other. In this regard the purpose of this research is to carry out numerical experiments
for the study of turbulent heat and mass transfer in high-reacting flows, which are formed when
burning a high-ash coal-dust flame of different dispersion of fuel in the combustion chamber
of a boiler and determination of thermal and aerodynamic characteristics of the combustion
chamber operating Thermal Power Plant of Kazakhstan.

2. Basic equations describing the coal-dust flame combustion process

The fundamental laws of conservation of quantities such as mass, momentum, energy [20] are
used for the numerical simulation of heat and mass transfer. As the heat and mass transfer in
the presence of physical and chemical transformations is the interaction of turbulent motion and
combustion processes it is necessary to take into account the law of conservation of components
of the reaction mixture, turbulence, multiphase flows, and heat generation due to the radiation
of heated fluid and chemical reactions.

To describe the heat and mass transfer processes in high-temperature and chemically reacting
flows in the presence of the burning it is necessary to use a mathematical model which constitutes
a system of three-dimensional non-autonomous nonlinear partial differential equations. In this
complex system includes the continuity equation and the state of a viscous medium, the equation
of motion, and heat transfer components of the reacting mixture and products of chemical
reactions which are described in paper [21].

Mathematical models of complex heat and mass transfer processes in reacting media are
written in the general form of the law of conservation of some quantity Φ (mass, momentum,
the energy, component of the mixture). Then the generalized transfer equation in turbulent flow
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takes the following form:

∂

∂t
(ρΦ) = − ∂

∂xj
(ρujΦ) +

∂

∂xj

[
Γϕ,eff

∂Φ
∂xj

]
+ Sϕ, (1)

here j = 1, 2, 3 characterizes the spatial direction component of the coordinate xj and the
velocity uj [m/s]. Φ – the generalized transport variable (uj , T, C, k, ε), Sϕ – the source term,
Γϕ,eff – coefficient of molecular and turbulent exchange, ρ is the density [kg/m3].

Molecular and turbulent exchange coefficient is equal to:

Γϕ,eff = Γϕ,lam + Γϕ,turb. (2)

For the equation of momentum balance:

μeff = μlam + μturb. (3)

For the equation of energy balance:

Γh,eff =
λ

cp

+ Γh,turb. (4)

For the law of component conservation:

Γc∗β ,eff =
μlam

ρ · Dc∗β

+ Γc∗β ,turb. (5)

There are λ – coefficient of thermal conductivity [kW/(m ·K)], cp – specific isobaric heat
capacity [kJ/(kg ·K)], c∗β – mass concentration [kg/kg], D – diffusion coefficient [m2/s].

Turbulent viscosity μturb [kg/(m · s)] is determined by the ratio of the Prandtl-Kolmogo-
rov [14]:

μturb = cμ · ρ · k2

ε
, (6)

where cμ – the empirical constant, k – turbulent kinetic energy [m2/s2], ε – dissipation rate of
turbulent kinetic energy [m2/s3].

3. Subject of investigation
Computer experiment for the study and modeling of heat and mass transfer processes in the
combustion of solid fuels taking into account occurrence at the same time physical and chemical
transformations was carried out on a numerical model of the real energy facility. As the resear-
ched object is selected the combustion chamber of boiler BKZ-160 Almaty TPP-3 (Kazakhstan)
to the block of 173 with a steam generating capacity of 160 t/h. Fig. 1 shows a circuit the
combustion chamber of the boiler, the general view and its breakdown into elementary volumes
for carrying out computing experiments. The combustion chamber is equipped with 8 straight-
through slot burners, arranged on the side walls of the furnace by the tangential scheme. The
main characteristics of the studied object are provided in Table 1.

Computational experiments on research heat and mass transfer processes have been carried
out by the starting FLOREAN software package [2, 15, 16]. The geometry of the combustion
chamber was created by a computer program “PREPROZ”, allowing to obtain the source files
“GEOM”, which always re-written when a new object of study (combustion chamber) is selected,
taking into account geometry of the burners, their size, shape and location in the space of the
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a) b)

Fig. 1. a) Scheme of the furnace, b) general view of the camera, broken down into control volumes

Table 1. The main characteristics of combustion chamber and composition of Ekibastuz coal

Fuel consumption on the burner, t/h BΓ = B/Z 3.787
Excess air ratio at the exit from a fire chamber αT 1.27 Ekibastuz coal
Excess air ratio in the burners αΓ 0.68 [kg/kg]
Air suction in the furnace Δα 40
Fuel mixture temperature [◦C] Ta 250 W 0.065
The temperature of the secondary air [◦C] T2 380 Adry 0.369
Height [m] z (H) 21 Cdaf 0.448
Width [m] y 7.168 Hdaf 0.030
Depth [m] x 6.565 Odaf 0.073
Primary air velocity (fuel mixture) [m/s] W1 25 Ndaf 0.008
The velocity of secondary air [m/s] W2 40 Sdaf 0.007

combustion chamber. During the numerical simulation of heat and mass transfer process the
control volume method has been applied. Combustion chamber of a power boiler BKZ-160 has
been divided into control volumes using a computational grid: I = 66, J = 32, K = 103. It
is possible to obtain 217 536 computational areas. In the following section, there are presented
the results of numerical experiments to study the processes of heat transfer and aerodynamics
in the combustion chamber of the boiler BKZ-160 Almaty TPP-3 (Kazakhstan) by burning in it
high-ash Ekibastuz coal (Table 1).

4. The results of numerical experiment
Many analytical researches are conducted in the simplified conditions which differ from real
furnace process. Such simplifications somewhat distort a true picture of process of burning. One
such simplification is the constant average diameter of the coal particles, but in reality such
coal cannot be obtained. The more real process of coal combustion in the thermal power station
corresponds to the following percentage distribution of coal particle size: dp = 10 μm − 10%,
dp = 30 μm−20%, dp = 60 μm−40%, dp = 100μm−20%, dp = 120 μm−10%. Polydisperse
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flame, at this choice of distribution of particles of coal, is calculated and for monodisperse flame
calculations the average particle diameter of 60 microns was chosen.

This paper presents the results of numerical modeling of aerodynamics and heat transfer in
combustion of Ekibastuz coal, which heating value is 17.56MJ/kg, in the camera of an industrial
boiler BKZ-160. Comparison of results of computing experiment on burning of a monodisperse
flame with results of modeling of burning of a polydisperse flame is carried out. A comparative
analysis of the data from in-situ experiment was also carried out.

4.1. Research of aerodynamic characteristics of pulverized coal flow
Figs. 2–5 show the field of a vector of full speed throughout the volume of the combustion
chamber of the boiler BKZ-160 during the combustion of monodisperse and polydisperse
flames. The received high-speed fields allow to visually analyzing the aerodynamics of reacting
flows in the combustion chamber. Fields of a vector of full speed V =

√
u2 + v2 + w2 shows

the magnitude of the flow velocity of the medium and its direction at every point.

a) Monodisperse flame b) Polydisperse flame

Fig. 2. Field of a vector of full velocity in the longitudinal section of the combustion chamber (x = 3.16m)

a) Monodisperse flame b) Polydisperse flame

Fig. 3. Field of a vector of full velocity in the longitudinal section of the combustion chamber (y = 3.7m)
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In the three-dimensional graphs (Figs. 2–5) picture of the aerodynamics of dust and gas flow
is observed. In Figs. 2–4 the area of fuel and oxidizer is clearly visible: counter dust and gas
streams from opposing tangential burners create a vortex in the central part on the location of
burners and level of active burning zone. Part of the flow is directed down to the funnel, forming
two symmetrical vortex in the area below the burner arrangement (Figs. 2 and 3), it is typical
both for burning of a monodisperse flame and for burning of a polydisperse flame.

However, in a longitudinal section of the combustion chamber (x = 3.16 m) symmetry is
broken relative to the vertical axis of the chamber when burning polydisperse flame (Fig. 2b), and
in cross-section (y = 3.7m) there are minor differences in the area of active burning (Fig. 3a, b).
It means that burning of dust and gas streams with different particle sizes affects to the character
of the flow stream. In cross-section chamber at a level between the lower and upper tiers of
burners (z = 5.3 m) there is a clear picture of the current. Streams of pulverized fuel entering
the combustion chamber, creating three-dimensional turbulence in the center of the chamber,
whose velocity reaches 20 m/s, thereby improving process of mixing and increasing the intensity
of heat and mass transfer [11], but the apparent differences in the nature of monodisperse and
polydisperse burning flames is not observed (Fig. 4a, b).

The central whirled movement of a coal-dust flow leads to uniform heating of walls of
the combustion chamber, reduces the slagging thermal shields and thermal losses. It prolongs
service life of separate elements of the boiler system, and also increases a heat removal surface.
At the exit of the combustion chamber (Fig. 5a, b) the velocity field is aligned, the vortex flow
of a current weakens, the uniform current relative to the center of the combustion chamber is
observed, due to the thrust generated at the output of the furnace (area of fuel and oxidant). There
is a slight difference in the distribution of vectors of full speed at the exit from the combustion
chamber for a mono- and polydisperse flames (Fig. 5a, b). But the velocity at the exit from the
combustion chamber reaches 5 m/s for both cases.

Analyzing the obtained data, it is possible to make the conclusion that the most combustion
occurs in the burner zone location, i.e. area of mixing of fuel and an oxidizer. Vortex character
of a current weakens in process to an exit of a turbulent flow from the combustion chamber, and

a) Monodisperse flame b) Polydisperse flame

Fig. 4. Field of a vector of full velocity in the cross-section of the combustion chamber (z = 5.3 m)
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a) Monodisperse flame b) Polydisperse flame

Fig. 5. Field of a vector of full velocity at the exit from a combustion chamber (z = 20.96 m)

at the exit of the combustion chamber (Fig. 5a, b) there is substantially uniform velocity profile.
It is shown that aerodynamics of a current when burning monodisperse and polydisperse flames
has some differences, however if it is necessary to carry out quickly evaluation calculations,
then the numerical simulation of the aerodynamic characteristics of the coal combustion process
is possible to be performed by use the model of burning averaged particle size, that in turn
reduces expenses of machine time.

4.2. Research of thermal characteristics of pulverized coal flow

The area of installation of burners is an area with the greatest changes of speeds, changes
velocity fluctuations and the area with the most intense occurring processes of physical and
chemical transformations of pulverized coal. In this part of the combustion chamber, fuel
component oxidation reactions is going from maximum values, as indicated by the maxima in
the distribution of chemical energy (Figs. 6–8).

Fuel mixture enriched with carbon of fuel and oxygen of air supplied through the burners,
and in this area the maximum quantity of heat energy is released. In this regard, there is a distinct
maximum of chemical energy Qchem (Fig. 6a, b), which is observed near the upper and lower
tiers of burners (two peaks in the distribution curve Qchem, z = 5 m and z = 5.94 m).

In the process of promoting the flow from the area of the burner to up the intensity of the
chemical processes is reduced and the values of the chemical energy decrease. Clearly it shows
that the minimum value of the energy released by a chemical reaction, is observed in both cases
at the exit of the combustion chamber where processes of burning with heat production are
almost complete.

The analysis of the two-dimensional distribution graph of average values of chemical energy
shows that the energy released during the combustion of polydisperse flame, takes large values
in the zone burners, in contrast to combustion of monodisperse (Fig. 6b). This is apparently due
to the presence of large-size fractions dp = 100 μm− 20%, dp = 120 μm− 10% with a greater
surface area of interaction in polydisperse flame.

The above mentioned is confirmed by the three-dimensional distribution of the chemical
energy in the volume of the combustion chamber. Distributions of chemical energy Qchem in
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Fig. 6. Comparison of the average values of the chemical energy Qchem.: a) along the entire height of the
combustion chamber, b) in active burning zone

the longitudinal (x = 3.16 m) and across (z = 4.81 m) sections of the combustion chamber are
depicted in Figs. 7 and 8. It can be seen that with increasing diameter of the coal particles, it
takes a longer combustion time, and the average values of the chemical energy of the interaction
will take large values (Figs. 6–8). So average values of chemical energy in longitudinal section
(x = 3.16 m) of a combustion chamber when burning a monodisperse flame is 113.9 kW/m3

(Fig. 7a), and for polydisperse – 108.9 kW/m3 (Fig. 7b). In cross-section (z = 4.81 m) of
the combustion chamber average values of chemical energy is 1 550.5 kW/m3 (Fig. 8a) and
1 550.9 kW/m3 (Fig. 8b), respectively, for mono- and polydisperse flames.

Carrying out research of thermal characteristics is an important step in modeling heat
and mass transfer processes in the combustion of pulverized coal and allows determining the
temperature field over the entire volume of the combustion chamber and the outlet of the
furnace [4, 8].
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a) Monodisperse flame b) Polydisperse flame

Fig. 7. Distribution of the chemical energy in a longitudinal section of the combustion chamber
(x = 3.16 m)

a) Monodisperse flame b) Polydisperse flame

Fig. 8. Distribution of chemical energy in the zone of burners (z = 4.81 m)

Figs. 9–12 show the temperature profiles that characterize the thermal behavior of pulverized
coal flow in the combustion chamber of the boiler BKZ-160 Almaty TPP. It can be seen that in
both cases (mono- and polydisperse flames) the greatest changes in the temperature distribution
are in the region of burner (Fig. 9). This is due to the fact that in this region most intensive
mixing of carbon fuel with air oxygen occurs, also intensive chemical reactions of oxidation
take place in this area. Maxima of the temperature are due to the fact that there is a process
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Fig. 9. Comparison of average temperature values for poly- and monodisperse flames and a comparison
with the field experiment [1]

of ignition when fuel and an oxidizer are mixed, a chemical process of interaction leads to the
release of a large amount of heat. The minima of the temperature are due to the fact that fuel
mixture supplied through the burner is cold (Ta = 250 ◦C). This is typical for both polydisperse
flame and monodisperse flame.

In a zone of active burning average values of temperature of polydisperse flame have smaller
values in comparison with monodisperse (Fig. 9). This can be explained by the presence of large
fractions of carbon particles in the polydisperse flame, that ignite and burn slower than smaller
particles. Fig. 9 shows the experimental points received as a result of measurements directly on
thermal power plant [1]. Thus, it can be seen that the numerical simulation results are in good
agreement with the results of field experiment. It is leading to the conclusion of the applicability
of the proposed physical-mathematical model of combustion processes, used in this paper.

a) Monodisperse flame b) Polydisperse flame

Fig. 10. Temperature distribution in the cross section of the combustion chamber (z = 4.81 m)
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a) Monodisperse flame b) Polydisperse flame

Fig. 11. Temperature distribution in a longitudinal section of the combustion chamber (x = 3.16 m)

a) Monodisperse flame b) Polydisperse flame

Fig. 12. Temperature distribution at the outlet of the combustion chamber (z = 20.96 m)

Figs. 10–12 present graphs of temperature distribution in different sections of the combustion
chamber. The graphs obtained by means of the 3-D modeling make it possible to describe fully the
temperature field at any point of the combustion chamber with very high accuracy. As expected
the temperature distribution at the outlet of the combustion chamber are similar (Fig. 12a, b)
and equal to 1 092.9 ◦C for monodisperse, and 1 089.5 ◦C for polydisperse flame. Analysis of
the data leads to the conclusion that the results of polydisperse flame modeling are in better
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agreement with the data of experiments performed at the thermal power plant. For example, the
output value of the temperature measured directly at thermal power plant [1] is closer to the
temperature value for polydisperse flame (Fig. 9) and equal T = 1 060 ◦C. This follows from the
fact that in real practice the coal is a polydispersed coal dust, and, in practice, it is not possible
to obtain particles of the same size.

5. Conclusion

In this paper, study of aerodynamic and thermal characteristics of the combustion process of
monodisperse and polydisperse flames was conducted. Heat transfer processes represented by
the distribution of temperature and thermal field were investigated.

According to the results of the study, the following conclusions can be made:
1. By analyzing the flow aerodynamic it can be said that it correctly describes the mass

transfer processes occurring in the volume of the furnace. In the center of the combustion
chamber is formed vertical swirling motion associated with tangential fuel supply. This
leads to increases the residence time of coal particles in the furnace, and consequently
reduces underburning associated with carryover of unburned particles from the flue gases.

2. It is shown that the thermal characteristics of the process take maximum values in an area
where the ignition and combustion of fuel. In the area of the burner there are maximum
and minimum temperature values that are respectively related to the ignition of dust-gas
mixture and the cold temperature fuel mixture. All chemical processes are attenuated from
the belt of burners to out of the combustion chamber that leads to lower temperatures.

3. According to a study of the combustion process of mono- and polydisperse coal it is
possible to approve, that the model of polydisperse dust burning more accurately reflects
the actual combustion process occurring in the combustion chamber.

It is impossible to achieve the perfect value of coal fineness in actual conditions.
Therefore there is a need to use the model of polydisperse flame in the simulation of turbulent

heat and mass transfer and not to resort to a simplified model of monodisperse flame. The model
of monodisperse is convenient for applying when it is necessary to show quickly show the
overall picture of burning or aerodynamic flow. The results obtained in this study will give
recommendations for optimizing the burning process of pulverized coal in order to reduce
pollutant emissions and creations of power stations on ‘pure’ and an effective utilization of coal.
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