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Received 15 January 2018; accepted 20 June 2018

Abstract

In this paper, we are proposing a new formulation of dissipated energy of hard rubbers as a function of the
deformation energy expressed by the Yeoh hyperelastic model. Torsion deformation is considered as a planar
deformation of a simple shear on the surface of a cylinder. Thus the deformation energy is dependent only on the
first invariant of strain. Based on the experiment, a “hyperelastic proportional damping” (HPD) is proposed for hard
rubbers under finite strains. Such damping is analogical to the model of proportional damping in the linear theory
of viscoelasticity, i.e. the dissipated energy is proportional to the deformation energy multiplied by the frequency of
dynamic harmonic loading. To obtain the experimental data, samples of hard EPDM rubbers of different harnesses
were dynamically tested on a torsional test rig for different frequencies and amplitudes. The Yeoh model is chosen
since the deformation function is dependent only on the first strain invariant for the description of the simple shear
of a surface cylinder. The Yeoh constants are evaluated by curve fitting of the analytical stress function to the
experimental torsion stress-deformation curve. The constants are used to express the deformation energy of the
Yeoh model for specific cases of tested rubbers. The coefficients of hyperelastic proportional damping are evaluated
on the basis of experimental results.
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1. Introduction

Unlike conventional structural materials, rubber materials under dynamic loading exhibit a
non-linear time-varying behaviour due to the size of straining, creep, temperature and aging [8]
and [9]. Tests of rubbers with higher hardness Sh 50-80 [5] were performed in the laboratories of
IT AS CR in recent years [10]. The dynamic tests of hard rubbers require usually a costly long-
term operation of heavy hydraulic machines. Therefore we have started to look for realization
of the tests in laboratory conditions with the lighter laboratory technique. Currently we have
been developing a torsional dynamic test rig for torsional straining of hard rubber samples with
a circular cross-section [12]. The reason for torsion straining was that hard rubber materials are
softer in torsion than in pressure and therefore it is easier to achieve larger strains. Furthermore,
the shape changes are smaller in this case compared to pressure loading when so-called barrelling
effect arises due to the incompressibility of the material.

The torsional test rig should serve to dynamic material tests of hard synthetic rubbers for
determination of the thermo-viscous-elastic material characteristics under small as well as finite
strains, different amplitudes, frequencies and temperatures. To describe the stress of the rubber
at torsional load we used its analogy with simple shear stress on the surface of a cylinder sample.
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This paper deals with the deformation analysis of cylindrical samples at larger shear strains
(about 30%) which led to finding the relationship between dissipated energy and strain energy
at larger torsion deformations. The tested rubbers are a viscoelastic material and we propose
to model its dissipation energy on the basis of excitation frequency and strain level using
deformation energy defined by the theory of hyperelasticity. Therefore the function of energy
dissipation of hard rubbers under finite strains is defined as a hyperelastic proportional damping
(HPD) similar to modelling of damping in the linear theory of viscoelasticity. So, the dissipated
energy is expressed as the product of the function of deformation energy, excitation frequency
and coefficient of HPD. Nowadays, hyperelastic materials, such as elastomers, are extensively
employed in a wide range of applications.The coefficients of HPD relating a dissipated energy
to a strain energy were then evaluated for tested rubbers on the basis of experimental results. The
constitutive relation for an incompressible, homogeneous and isotropic material at finite strains
can be derived from a strain energy density function of hyperelastic models. These hyperelastic
models considered as isotropic incompressible materials are used for the description of the
deformation energy.

For the material testing, we choose the temperature of −20 ◦C which makes the influence
of the amplitudes of the excitation torque on the values of the loss factor most evident. We
tested two samples of isoprene butadiene rubber (EPDM) of different hardness (Sh70 and Sh85)
with excitation amplitudes of torque moment in a range from 0.2 Nm to 9.2 Nm. Excitation
frequencies were 2 Hz and 5 Hz. Stress-strain curves, deformation and dissipated energies were
evaluated for different amplitudes of the excitation torque moment.

2. Green’s approach to deformation expression

Torsion straining of the cylindrical surface is analogous to the straining in a simple shear. For
simple shear deformation we express the strains in the current description

x1 = X1 + γX2,

x2 = X2, (1)
x3 = X3,

where x1,2,3 are the current coordinates, X1,2,3 are the reference coordinates and γ is the shear
strain of a segment of the cylinder. Assuming the state of plane strain, the principal strains λi

on the surface of the cylinder are given by

λ1 =

√
1 + γ2 + γ

√
1 +

γ2

4
, λ2 =

√
1 + γ2 − γ

√
1 +

γ2

4
, λ3 = 1, (2)

where must be valid that λ1 > 1 and λ1 > λ3 > λ2. The shear size of the main strains is equal
γ = λ1 − 1/λ1 [7].

Using equation (1), the deformation gradient tensor for simple shear can be expressed as

F =

⎛
⎝ 1 γ 0
0 1 0
0 0 1

⎞
⎠ . (3)

The left Cauchy Green strain B is determined from the deformation gradient as

B = FFT =

⎛
⎝ 1 + γ2 γ 0

γ 1 0
0 0 1

⎞
⎠ (4)

112
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and the principal invariants of B are given by

I1 = trB = γ2 + 3,

I2 =
1
2

[
(trB)2 − trB2

]
= γ2 + 3, (5)

I3 = 1.

The constitutive relation for an incompressible, homogeneous and isotropic material at finite
strains can be derived from a strain energy density function W . This function can be expressed
as a function of I1 and I2, i.e. W (I1, I2). Then the constitutive relation for Cauchy stress is
expressed in principal invariants as

σ = −pI + 2
∂W

∂I1
B− 2∂W

∂I2
B−1, (6)

where p is the Lagrange multiplier also called hydrostatic pressure, which is associated with
material incompressibility.

It has been reported in the literature devoted to hyperelasticity that the stored energy is stron-
gly dependent on the first invariant. Materials characterized by such behaviour are called gene-
ralized neo-Hookean materials. Several strain-energy density functions defined by W =W (I1)
have been proposed by Gent [2], Arruda and Boyce [1], Wineman [13], Horgan and Sacco-
mandi [3] and Lopez-Pamies [4]. We assume herein the dependence of the strain energy density
function only on the first invariant, i.e. W = W (I1) with respect to I1 = I2. Then the Cauchy
stress tensor is expressed as

σ = −pI+ 2
∂W

∂I1
B. (7)

The Cauchy stress components for simple shear can be written according to (7) as

σ11 = −p+ 2(1 + γ2)
∂W

∂I1
, σ22 = −p + 2

∂W

∂I1
,

σ33 = −p+ 2
∂W

∂I1
, σ12 = 2γ

∂W

∂I1
.

(8)

The Yeoh hyperelastic model was chosen for the description of the density of deformation
energy since this model depends only on the first strain invariant. For the studied case of a
simple shear, the six-parametric model was most suitable, so

W =
6∑

i=1

Ci0(I1 − 3)i, (9)

where W is the strain energy density, Ci0 are constants and I1 represents the invariant of the left
Green strain tensor [6]. Substituting (9) into (8) and after some algebra, the Cauchy shear stress
σ12 can be written in the form

σ12 = 2γ
(
C10 + 2C20(I1 − 3) + 3C30(I1 − 3)2+

4C40(I1 − 3)3 + 5C50(I1 − 3)4 + 6C60(I1 − 3)5
)
. (10)

The unknown constants Ci0 of the Yeoh model are then evaluated using the experimental shear
stress-strain curves by means of the least square method (LSM) in the form

t ≈ Ac, (11)
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where t = [σ1, . . . , σn]T is the vector of experimental shear stresses and the matrix A consists
of the coefficients of σ12 given by (10) for different values of measured γ. The vector c =
[C10, . . . , C60]T contains six unknown constants of the Yeoh model. By use of the LSM we get
the solution as

c = (ATA)−1ATt. (12)

3. Experimental observations

The shear modulus and the loss factor for each of torque harmonic excitation amplitudes were
evaluated from experimental hysteresis of deformation loops. The loss factor is a material
constant that measures a dissipated energy converted to heat during a harmonic cycle. The
methodology of the evaluation is presented in [10,12]. The dependences of the shear modulus on
strain is shown on Fig. 1. The hyperbolic softenings can be seen for both exctitation frequencies
and both rubber samples.

Fig. 1. The dependence of the shear modulus on strain at the temperature −20 ◦C for two excitation
frequencies 2 Hz (left) and 5 Hz (right)

The dependencies of loss factor on strain [%] are plotted for two excitation torque frequencies
(2 Hz, 5 Hz) in Fig. 2. From these dependencies, it is seen that the ratio between deformation
and dissipation energy for higher values of strains is almost constant, which is typical for the
proportional damping model (B = βK) for a linear viscoelastic material. Furthermore, the
dependences of loss factor on the shear modulus presented in Fig. 3 show that the loss factor
and therefore the dissipated energy decrease with increasing modulus for larger deformations.
It means that the dissipated energy is also related to the deformation energy. Based on these
observations we proposed (see below) a function of dissipation energy of hard rubbers for finite
strains analogically as the proportional damping for the linear theory of viscoelasticity and
extended for hyperelasticity.

Fig. 2. The loss factor versus strain for two excitation frequencies 2Hz (left) and 5Hz (right) – temperature
−20 ◦C
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Fig. 3. The dependence of the loss factor on the shear modulus at the temperature −20 ◦C for two
excitation frequencies 2 Hz (left) and 5 Hz (right)

4. Deformation energy of Yeoh hyperelastic model

To evaluate the deformation energy analytically we needed first tune the Yeoh constants to
experimental shear stress-strain curve. Experimental shear stress-strain curves of selected hard
rubbers were obtained by our torque test rig for a temperature −20 ◦C. The test specimen was
of cylindrical shape glued at both heads to steel consoles pins mounting in the collets. By usage
of the consoles the test sample is not deformed in the vicinity of the heads due to clamping. The
dimensions of the test sample of rubber were: �◦D = 0.03 m, length L = 0.095 m.

As mentioned previously, the material isoprene butadiene rubber (EPDM) of hardness Sh70
and Sh85, the test temperature −20 ◦C and the frequency 2 Hz of torsional loading were used
at first. Experimental curves of shear stress τ vs. strain (skew) γ, where the skew maximums
were about 30% (sample Sh70) and 20% (sample Sh85), are shown in Fig. 4. The determined
six material parameters of the Yeoh model based on LSM method [11] determined by using
(10)–(12) are following:

Rubber EPDM Sh70

C10 = 8.612 9·106 Pa, C20 = −5.514 4·108 Pa, C30 = 2.792 3·1010 Pa, C40 = −7.281 4·1011 Pa,
C50 = 8.998 · 1012 Pa, C60 = −4.135 · 1013 Pa.

Rubber EPDM Sh85

C10 = 1.063 ·107 Pa, C20 = −6.720 7 ·108 Pa, C30 = 4.406 6 ·1010 Pa, C40 = −1.604 7 ·1012 Pa,
C50 = 2.912 9 · 1013 Pa, C60 = −2.058 1 · 1014 Pa.

Fig. 4. Deformation curves of experiment and the six-parametric Yeoh model for EPDM Sh70 (left) and
for EPDM Sh85 (right) for the frequency 2 Hz
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As mentioned previously, based on experimental observations, the dissipation energy was
proposed as a HPD similar to the modelling of damping in the theory of viscoelasticity. The
dissipated energy UDis is then expressed as a product of the coefficient of HPD β, excitation
frequency ω and deformation energy UDef coming from the hyperelastic Yeoh model with six
parameters:

UDis = β · ω · UDef . (13)

The experimental dissipation energy was obtained from the area of the hysteresis deformation
loops for each case of the excitation torque moment. The computed dissipation energies in
dependence on strain for both rubbers are presented in Fig. 5. It shows the same nonlinear
dependence of dissipated energy as in the case of its dependence on strain, as clear from the
relation (15), see below.

Fig. 5. The dissipated energy versus strain for
EPDM Sh70 and EPDM Sh85 rubbers – tempe-
rature −20 ◦C, excitation frequency 2 Hz

Fig. 6. The deformation energy of the Yeoh
models vs. strain for EPDM Sh70 and EPDM
Sh85 rubbers – temperature −20 ◦C, excitation
frequency 2 Hz

Total deformation energy was analytically evaluated from the deformation energy density
uDef multiplied by the specific torque volume Vred. The deformation energy density is calculated
directly from the deformation energy density of the Yeoh model as

uDef = C10(I1−3)+C20(I1−3)2+C30(I1−3)3+C40(I1−3)4+C50(I1−3)5+C60(I1−3)6. (14)

Then the total deformation energy is calculated from this relationship

UDef = udef · Vred. (15)

The total deformation energies calculated for EPDM Sh70 and EPDM Sh85 rubbers modelled
by using the Yeoh six-parametric models are shown in Fig. 6. It is clear that the higher hardness
of the rubber is, the higher deformation energy is obtained.

The dependence of the total deformation of the Yeoh model for the EPDM Sh85 rubber
and for the both used frequencies, i.e. 2 Hz and 5 Hz, can be seen in Fig. 7. It shows that the
frequency dependence is very weak at torsional harmonic load with frequencies up to 5 Hz. The
constants C10, . . . , C60 were obtained for the excitation frequency 5 Hz in the the same way as
for the frequency 2 Hz.

The HPD coefficients β evaluated from (13) in dependence on strain are presented for both
rubbers in Fig. 8. It is obvious that the coefficient is almost the same for both tested rubbers and
it remains almost constant with the value of strain.
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Fig. 7. The Yeoh deformation energies vs. strain for
the EPDM Sh85 rubber and for excitation frequen-
cies 2 Hz and 5 Hz and for temperature −20 ◦C

Fig. 8. The hyperelastic proportional damping co-
efficient β vs. strain for EPDM Sh70 and EPDM
Sh85 rubbers – temperature −20 ◦C, excitation
frequency 2 Hz

5. Conclusion

Two EPDM hard rubbers were tested on our torque test rig in order to determine their material
constants and damping behaviour under different amplitudes and frequencies of harmonic ex-
citations and under finite shear deformations. First, the shear modulus and the loss factor were
evaluated for each excitation setting. Based on the experimental observations, the model of
“hyperelastic proportional damping” was proposed here and the unknown coefficients of HPD
were identified for both rubbers. The results of the coefficient values show that the coefficient
is almost the same for both tested rubbers and it remains almost constant (independent from
strain). Since the harder tested rubber has higher deformation energy, also the dissipation energy
is higher. The reason is that it is related to the deformation energy by the proportional damping
expression. For the simple torsion case, the shear stress expressed as a function of the first
invariant of strain was in a very good agreement with the experimental results. In order to obtain
a good estimation of the constants of the Yeoh model, a sufficient number of experimental data
points at each load step, i.e. amplitudes and frequencies, are required. The results were obtained
for one selected temperature. Due to the strong temperature dependence of hard rubber, both its
dissipation and its strain energy will change with the temperature. Therefore, in order to obtain
the temperature dependence of the HPD coefficients they should be evaluated separately for
each temperature.

Our future research will focus on the model of dissipation. The Yeoh model will be imple-
mented into our in-house finite element code. It will allow us to simulate the thermo-dynamic
behaviour of the rubber dampers of more complicated shapes, states of stress and finite defor-
mations.
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P. Šulc et al. / Applied and Computational Mechanics 12 (2018) 111–118

[2] Gent, A. N., A new constitutive relation for rubber, Rubber Chemistry and Technology 69 (1996)
56–61. https://doi.org/10.5254/1.3538357

[3] Horgan, C. O., Saccomandi, G., Antiplane shear deformations for non-Gaussian isotropic, in-
compressible hyperelastic materials, Proceedings of the Royal Society A 457 (2001) 1999–2017.
https://doi.org/10.1098/rspa.2001.0798

[4] Lopez-Pamies, O., A new I1-based hyperelastic model for rubber elastic materials, Comptes
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estimation for resilient wheel application, Journal of Advances in Engineering Software 113 (2017)
76–83. https://doi.org/10.1016/j.advengsoft.2016.07.009

[11] Šulc, P., Pešek, L., Bula, V., Cibulka, J., Košina, J., Additional axial stress of rubber cylinder at tor-
sion deformations and large strains, Proceedings of Dymamesi 2016, Institute of Thermomechanics
AS CR, v.v.i, Prague, 2016, pp. 57–65. (in Czech)
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