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Abstract

Data processing and subsequent mining is a widely followed task. Employment of suitable evaluation and in-
terpretation procedures can significantly improve the effective resolution of measuring facility using an identical
hardware equipment. Recording of time variable processes is accompanied by various internal disturbing effects
as a rule. They influence parameters of the measuring facility, transducer-device transmitting, etc. These parasitic
processes are usually of the random character and, consequently, they exercise as parametric noises. Moreover, the
input signal mostly consists of a useful signal, which can be taken for deterministic, and of a random additive part.
Due to interaction of additive noises with the device itself, the cross-correlation of both additive and multiplicative
noises cannot be neglected as a rule. Various combinations of noises are the origin of random and also systematic
measuring errors which can have under certain circumstances a cumulative character. Their influence deteriorates
the output signal quality and can lead finally to the stochastic stability loss. These effects can be theoretically
described using differential systems with stochastic coefficients and a stochastic right hand side considering all
input and output processes to be of the Markov type. A direct investigation of the relevant Fokker-Planck equation
is employed as the main tool. Two first stochastic moments (mathematical mean value and variance) as evolutionary
processes are investigated for a general deterministic useful signal and subsequently for two special cases of this
one. Both types of input random noises are considered. Conditions of stochastic stability with respect to intensities
of input random processes are formulated. The probability density function is deduced as well, in order to illustrate
the probabilistic character of the system response as a whole. The stochastic asymmetry of the output signal is
identified. Limitation procedures show a smooth transition from a general stochastic problem to deterministic noise
free input signal and its processing.
c© 2019 University of West Bohemia. All rights reserved.
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1. Introduction

Measurement of dynamic quantities is usually accompanied by various interfering processes,
see Fig. 1. They affect the useful signal f(t) on its way from a sensor element to a measuring
device. This disturbing process ϕ(t) is mostly random and is added to the useful signal which
is tracked. Therefore, on the input of a measuring device the sum of both is perceived. Hence, a
subsequent filtering through a device being given by an operator D{·} works with the process
f(t)+ϕ(t). Inside of a device some more inevitable perturbations w(t) are generated influencing
parameters of the device itself. Therefore, such perturbations have a parametric (multiplicative)
character and they are random as well. The output signal from the device u(f, w, ϕ), which is
then recorded for further data processing, is a function of the useful signal and additive and
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Fig. 1. The signal flow in a measuring facility: (a) recording equipment, (b) measuring device, (c) sensor
element; D{·} is the operator transforming input into output signal

parametric random noises. For the theoretical background of random processes, their filtering
and other manipulation, see well known monographs [4, 8, 13] and others.

Different combinations of additive and parametric noises are an origin of not only random but
also systematic errors of measurement, which may be cumulative in certain circumstances and
can result in degradation of the recorded signal; in particular its resolution ability and information
reliability. The system may become stochastically unstable due to random noises, see, e.g., [8]
or [10]. Influencing the mathematical mean value and shape of the response probability density
due to parametric random noises is a general phenomenon and occurs in all types of linear and
non-linear operators.

It is worthy to recognize character of such perturbation and try to filter out their influence onto
the output processes. Such an intervention can significantly improve resolution of measurements
using the same equipment. At the same time, it is necessary to be aware that the random
part of output processes is non-Gaussian in general, even if all input processes are Gaussian
(commonly adopted assumption). There are several reasons for that: parametric noises and
their possible interaction with additive noises, possible nonlinearity of the signal processing in
the measuring facility, etc. Therefore, an employment of conventional correlation and spectral
methods becomes problematic and formulation based on the theory of Markov processes and
“associated” Fokker-Planck Equation (FPE) is necessary.

2. Mathematical model

For the sake of clarity, we choose the simplest conceivable model of the measuring system
which can be considered; a simple first-order tracking system with a feedback. The noises will
be considered as the Gaussian centered processes of known characteristics. The behavior of
the system under consideration can be described by a linear stochastic differential equation
(Langevin equation):

u̇(t) = −(C + w(t))u(t) + f(t) + ϕ(t), (1)

C – constant,
w(t), ϕ(t) – multiplicative, or additive noises, respectively; Gaussian centered white

noises with intensities: sww, sϕϕ, swϕ,
f(t) – deterministic smooth function; useful signal.

Both noises w(t) and ϕ(t) are narrowly related, as the additive noise influences significantly
the functionality of the device itself and, consequently, the processing of the signal itself. It
follows from numerous experiences in measuring practice. Therefore, the cross-intensity swϕ

should be taken into account. Indeed, even the original theory of the optimal filtering defines
and works with the full correlation (or intensity) matrix of input noises whatever they are of
additive or multiplicative type, see monographs [2, 4, 13] and many more.
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The system modeled by Eq. (1) is intended to track the useful signal f(t), so that its ideal
output is:

uf(t) = a0f(t), (2)

where a0 is a constant converting one physical quantity into another one. However, the actual
signal u(t) as a rule is different from the ideal signal uf(t). The ideal signal uf(t) cannot be
reached directly and we can ask only a certain optimum, which can be deduced from a minimal
variance of difference of both signals:

σ2 = E
{
(u(t)− uf(t))

2} = u2c(t) +Du(t), uc(t) = ud(t)− a0f(t), (3)

where:
ud(t) – mathematical mean value of the process u(t),
Du(t) – variance of the process u(t),
E {·} – operator of the mathematical mean value with respect to Gaussian probability

density. Take a note, that the Gaussian closure of the output signal is assumed to
enable applicability of the operator in this meaning.

To solve the problem of the optimal approximation of the ideal signal uf(t), in principal, two
strategies can be employed. The first group of procedures is based on the indirect reconstruction
of the output signal; it is known as the optimal or sub-optimal filtering, see, e.g., [2, 6, 13].

An indirect way consists in evaluation of a certain Bayesian conditional probability of the
response, while Eq. (3) is not used as a primary criterium. This procedure is apparently well
substantiated with a strong mathematical background. It leads to a substantial generalization of
the FPE, which includes integral and nonlinear terms. So, the generalized FPE is very complex
and any determination of parameters, even those of a simpler sub-optimal filter, requires further
simplifications in order to get through. Moreover, a filter following from the generalized FPE is
mostly of a multi-pass type. In such a case, as a rule, these filters cannot be used on-line at the
output of the measuring device and employed, for instance, for a feedback control. So that, the
practical application of the filter is complicated and inflexible.

On the other hand, the indirect way is always more robust, even if incomparably more
complicated in solution of the generalized FPE and mainly in application of the resulting filter.
In general, indirect procedures based on the generalized FPE analysis are preferable in conditions
when disturbances are large or when a high degree of “polishing” is necessary.

The second group of procedures is based on the direct investigation of a stochastic differential
system with combined deterministic and random input modeling behavior of a measuring system
as a whole. There are many special cases where this approach is eligible and, hence, it is
preferrable. Practical aspects of this approach have been discussed in a number of papers,
e.g., [14].

There exists a significant overlap of both groups, but basically the direct procedures reveal
to be effective in simpler cases. In principle, this style of data processing has been brought into
consideration in the early nineties, see, e.g., [12] and others. A large variety of studies followed,
addressing many special domains of mechanics and informatics, [5, 9] and other disciplines,
e.g., [7]. These studies strive to extend deterministic methods into employment in stochastic
domain or to embed their background into conventional correlation or spectral approaches. As
a rule, many of them do not involve the basis of Markov processes and FPE, although also here
exceptions should be referred to, e.g., [3].

We try to keep the style of the direct group approaches, but we deeply involve the tool based
on Markov processes and relevant FPE. The reason is that the conventional FPE enables to
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develop a very flexible variety of procedures respecting a strong mathematical background and,
therefore, keeping a position being free of subjective hypotheses which are inevitably adopted
outside this strategy.

Basically, ud(t), Du(t) and corresponding p(u) are investigated. However, it can be shown,
see [13], that the minimal variance σ2, see (3), can be reached using a direct way by adopting
ud(t) instead of ideal output uf(t), which is inaccessible. As the direct way, it is considered
an analysis of the relevant FPE producing an adequate number of the first stochastic moments
of u(t) (here the 1st and 2nd moments are assumed to be convergent in the meaning of the
Gaussian closure). This treatment follows, in general, from properties of the Ito stochastic
differential which results in a classical version of the FPE. Of course, a number of assumptions
concerning the input processes and the system parameters should be fulfilled.

Therefore, the reconstruction in fact consists in evaluation of ud(t), which provides the mini-
mal variance σ2 when replacing the original signal by the stochastic moment series. Justifiability
and reliability of this step or quality of ud(t) as a representant of the true signal follow from
the subsequent evaluation of Du and mainly from the corresponding probability density p(u).
Therefore, no explicit minimization of σ2 should be done.

Let us revisit Eq. (1). The stochastic differential equation can be solved using one of the
commonly used methods, see monographs [2, 8, 13] and others. With respect to the fact that
the random parts of the input and output processes can be considered of the Markov type and,
moreover, both input processes are Gaussian and centered, it is worthy to employ the FPE to
search the unknown probability density function (PDF) p(u, t).

According to Eq. (1), we substitute into the formulas for the drift and diffusion coefficients,
see, e.g., [8, 13]. After some manipulation, we get the FPE for the given problem:

∂p(u, t)
∂t

=
∂

∂u

[((
C − 1

2
sww

)
u(t) +

1
2
swϕ − f(t)

)
p(u, t)

]
+

+
1
2

∂2

∂u2
[(

swwu2(t)− 2swϕu(t) + sϕϕ

)
p(u, t)

]
. (4)

Based on the FPE, it is also easy to deduce the approximate equations for computation ud(t),
Kuu(t) = Du(t) which are the first two stochastic moments characterizing approximately the
PDF of the response:

u̇d(t)=
(
−C + 1

2sww

)
ud(t)− 1

2swϕ + f(t), ud(0)=ud0, (a)
Ḋu(t)= 2 (−C + sww)Du(t)− 2swϕ · ud(t) + sϕϕ, Du(0)=Du0, (b)

(5)

where ud0, Du0 are initial values of ud(t) and Du(t), respectively. The first two moments
represent a qualitative approximation of the resulting PDF. It means in principle that the PDF of
the response does not qualitatively differ from the Gaussian curve, which can be resolved into
an asymptotically convergent series with respect to stochastic moments with Gaussian closure.
In particular, the output PDF should be uni-modal, integrable and smooth enough. In such a
case, the first two moments are acceptable to estimate qualitatively behavior of the response.

Eq. (5a) does not include Du(t) and, hence, it can be solved independently. We obtain:

ud(t) = ud0e
−a1t + e−a1t

∫ t

0
ea1τ

(
−1
2
swϕ + f(τ)

)
dτ, a1 = C − 1

2
sww. (6)

The parameter a1 should be positive, otherwise stability of Eq. (6) would be lost. It implies:

C >
1
2

sww. (7)
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For t → ∞, the first term vanishes and it holds:

ud(t) ≈ −swϕ

2a1
+ e−a1t

∫ t

0
ea1τf(τ) dτ. (8)

Similarly like before, also here should be a1 > 0 and, therefore, C > sww/2. It is obvious that a
systematic error −swϕ/2a1 emerges whatever is the useful signal, provided the cross-correlation
of both input signals is non-trivial.

We can see that the variance Du(t) of the output signal is not directly dependent on the
useful signal. On the other hand, an influence of f(t) penetrates indirectly due to interaction of
Du(t) with ud(t).

3. Mean value and variance of the response for constant and harmonic useful signals

Let us examine properties of the mathematical mean value of ud(t), or of the deterministic part
of the response, see, for example [1, 10]. The first term in Eq. (6) is obviously asymptotically
stable in the first moment ud(t), if Eq. (7) holds. Due to the fact that this term represents influence
of the initial condition of the homogeneous equation, it determines the stability of the system
itself. Provided the second term is estimated from above using the Schwarz inequality, we get
again Eq. (7) on the one hand and on the other hand the condition of f(τ) square-integrability in
the interval (0, t). Therefore, Eq. (7) represents the condition of Eq. (1) stability in probability.
The same result can be received when using the stochastic variant of the Lyapunov function,
see, e.g., [2, 4] or [10].

Let us consider two special cases:
(a) The useful signal is constant: f(t) = f0,

ud(t) = ud0e
−a1t +

1
a1

(
f0 −

1
2
swϕ

) (
1− e−a1t

)
. (9)

The mathematical mean value uc(t) with respect to Eq. (3) reads:

uc(t) = ud0e
−a1t +

f0
a1

(
1− a0a1 − e−a1t

)
− swϕ

2a1

(
1− e−a1t

)
. (10)

In the stationary state, i.e. when t → ∞, and supposing validity of Eq. (7), it arises from Eq. (9):

ucs =
1
a1

(
f0(1− a0a1)−

1
2
swϕ

)
, (11)

where ucs is the stationary value of uc(t), which is reached for t → ∞. Provided the system is
free of noises, then obviously the ideal value of a0 in meaning of Eq. (2) reveals C−1. Putting
that into Eq. (11), one obtains for the systematic error when noises are respected:

ucs =
1
2a1

(
f0
C

sww − swϕ

)
. (12)

Even if the useful signal is trivial, for non-zero cross-correlation of input noises the mathematical
mean value of the deviation Eq. (12) is different from zero. On the other hand, the systematic
error is non-trivial for f0 > 0 even for independent noises. In order to avoid these unwanted
effects, it would be preferable to use a0 following this formula:

a0 =
f0 − 1

2swϕ

f0(C − 1
2sww)

. (13)
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Fig. 2. Evolution of the output signal mean value ud(t) for a constant useful signal with amplitudes
f0 = 0.0, 0.2, 0.4, 0.6, 0.8 and various settings of parametric noise variance sww and cross correlation of
both noises swϕ

Parameter a0 following Eq. (13) can be interpreted as a transforming value introduced in Eq. (2).
Its explicit evaluation is meaningful in the case of a constant useful signal, where the closed
form solution of the problem is possible. Nevertheless, this assignment can be used, for instance,
for calibration purposes.

Some demonstrations of the output mean value ud(t) are obvious from Fig. 2. The systematic
error is well visible in the first column of plots for f0 = 0, but also for other f0 is the horizontal
asymptote (dashed line) visibly shifted due to the non-zero cross-correlation swϕ. This shift
disappears for swϕ = 0, see the right column.

(b) The useful signal is harmonic: f(t) = f0 sinωt, uc(t) – formally coincides with ud(t),
where

ud(t) =

(
ud0 +

f0ω

a21 + ω2
+

swϕ

2a1

)
e−a1t − swϕ

2a1
+

f0√
a21 + ω2

sin(ωt− ψ); tgψ =
ω

a1
. (14)

Regarding uc in the meaning of Eq. (3), it is formally identical with ud. The only difference is
in the phase shift ψ, which reads

tgψ =
ω

a1 − a0(a21 + ω2)
. (15)

The mathematical mean value of the response or of the deviation in stationary state is
harmonic with the same frequency as the input signal. The response is phase shifted, where this
shift approaches −π/2 for a1 → 0 and grows with the frequency of the useful signal. The mean
value is non-zero and rises with increasing correlation of both noises and when sww → 2C. The
transition process prolongs with an increase of sww, swϕ and f0 and shortens for increasing ω.
Parameter a0 affects only the phase shift. It can be noted that the formula characterizing the
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Fig. 3. Evolution of the output signal mean value ud(t) for a harmonic useful signal, frequency ω = 6.283,
with amplitudes f0 = 0.0, 0.4, 0.8 and various settings of parametric noise variance sww and cross
correlation of both noises swϕ

output influenced by random noises is simpler and more transparent for the harmonic useful
signal than that for f(t) = const. The systematic error is the same when t → ∞ for both cases
as we already found for the general case of the useful signal. The centered parametric noise
does not influence the mathematical mean value of the response, unless it is correlated with the
additive noise. In both cases it affects, however, the sensitivity of the system, which increases
with intensity of the noise as far as the stability loss of the system. Let us become aware that
the mean value ud(t) does not depend on intensity of the additive noise sϕϕ, as it follows from
Eq. (6) or (8). The additive noise applies indirectly together with the parametric noise through
the cross-correlation of both noises.

A few particular cases can be followed in Fig. 3. Keeping frequency ω = 6.283 of the mean
value ud(t) is obvious as well as its phase shift. It applies also to the systematic error in the
left column. In the right column, which corresponds to swϕ = 0, the systematic error does not
appear.

Let us revisit Eq. (5b) which will be used now to deduce the response variance. The solution
of Eq. (5b) can be written for a general history of ud(t) in the form:

Du(t) =

(
Du0 −

sϕϕ

2a2

)
e−2a2t+

sϕϕ

2a2
−2swϕe

−2a2t
∫ t

0
ud(τ)e

2a2τ ·dτ, a2 = C−sww. (16)

Regarding the stochastic stability of the second moment we obtain the simple condition:

C > sww, (17)

which is more severe than the condition Eq. (7). This is in line with the general principle
that the stability of higher moments can only be ensured by fulfilling stricter conditions, see,
e.g., [2,10]. At the same time, it can be said that the stability of the second moment (here variance)
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implicates the stability of the mathematical mean value, which does not hold reciprocally. The
same commentary regarding stability of the integral member in Eq. (16) can be expressed as it
was given in case Eq. (8), that is the necessary square-integrability of ud(t) at the interval (0, t).
However, it is always satisfied if ud(t) is asymptotically stable.

We use formula Eq. (16) for the both special input cases discussed above:
(a) The useful signal is constant. We substitute Eq. (9) into Eq. (16). After some manipulations

we receive:

Du(t) = (Du0 − c1 − c2) e
−2a2t + c2e

−a1t + c1, (18)

b1 =
f0 − 1

2swϕ

a1
, c1 =

sϕϕ + 2swϕb1
2a2

, c2 =
2swϕ(us0 − b1)
2a2 − a1

. (19)

For t = 0, the variance is equal to its initial value Du0. The transition process consists of
two parts. With respect to the ratio of a1 and a2, the first member in Eq. (18) drops faster than
the second. The curve approaches a horizontal asymptote:

Dus = c1 =
sϕϕa1 + 2swϕ

(
f0 − 1

2swϕ

)
2a1a2

. (20)

Provided it holds:
2a2 − a1 > 0, c1 > 0, c1 + c2 > 0. (21)

The curve rises first, reaches the maximum, for example at Du0 = 0 in point:

t =
1

2a2 − a1
lg
2a2(c1 + c2)

a1c2
(22)

and then it descends to the asymptote Eq. (20). If the conditions Eqs. (21) are not fulfilled, the
curve Eq. (20) approaches the horizontal asymptote from below.

The variance in a stationary state following Eq. (20) is influenced by the useful signal only
if the cross-correlation of both noises does not vanish. Otherwise (swϕ = 0):

Dus =
sϕϕ

2(C − sww)
. (23)

With zero cross-correlation of parametric and additive noises (swϕ = 0), we get to a classic
formula, from which it follows that the variance decreases with shrinking both parametric and
additive noises. An attempt for annulation of the numerator in Eq. (20) obviously does not seem
to make sense. Considering that s2wϕ ≤ sww · sϕϕ, it would mean that a useful signal meets the
condition:

f 20 ≤
sϕϕ

2swϕ

(
3
2
sww − C

)2
, (24)

which is not realistic assuming a significant dominance of f0 over ϕ(t).
Some tendencies of stationary state reaching have been outlined in Fig. 4. Two types of

horizontal asymptotes approaching with respect to noise intensities and cross-correlation can
be followed, as well as the successive escape of the maximum to t → ∞ for rising f0, as it
follows from Eq. (24). This process is also accelerated with the increasing cross-correlation swϕ.
Nevertheless, the basic qualitative separation limit is given by criterion C = 1.5sww related
with Eq. (24) as well.
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Fig. 4. Evolution of the variance Du(t) for a constant useful signal and two settings of noise intensities

(b) The useful signal is harmonic. Substituting Eq. (14) into Eq. (16), one obtains after
several modifications:

Du(t) = (Du0 − c3 + 2swϕ(c4 + c5)) e
−2a2t − 2swϕc4e

−a1t + c3 − 2swϕc6 · sin(ωt− ψ2), (25)

tgψ2 =
ω(2a2 + a1)
2a2a1 − ω2

, c4 =
1

2a2 − a1

(
us0 +

f0ω

a21 + ω2
+

swϕ

2a1

)
,

c3 =
sϕϕ

2a2
+

s2wϕ

2a1a2
, c5 =

f0ω(2a2 + a1)
(4a22 + ω2)(a21 + ω2)

, c6 =
f0

2a22 + ω2
.

Structure of Eq. (25) is similar to Eq. (18), which follows from the basic formula Eq. (16). With
disappearance of the first term which diminishes faster, the dependence of the variance on the
initial value vanishes and extinction of the second term eliminates any dependence on the initial
mathematical mean value of the response.

In the stationary state, the variance remains characterized by a non-symmetric sinusoid with
a delayed argument. In the case of uncorrelated noises, the dispersion approaches constant for
t → ∞. It remains in force also in the case, when c3 grows provided the value of sww increases
in admissible limits. Similar discussion concerning the existence of local maxima of curves
Du(t) can be performed like in the previous case, only different parameters are used.

Notice that unlike the mean value, properties of the variance Du(t) strongly depend on the
intensity of the additive noise; this regards namely duration of the transition process and the
asymptotic value, see Eqs. (18) and (25).

Let us summarize that the applicability of the theoretical background is limited by conditions
of stability of individual formulae, e.g., (6), (7), (17), (21), etc. However, we should be aware
that a practical application can show that the reasonable limits are lower. It strongly depends on
“dynamics” of the useful signal. The treatment of “dramatically” variable signals will be more
sensitive to a possible stability loss. On the other hand, the indirect procedures of the optimal
filtering suffer from this shortcoming too.

4. Probability density of the response

Let us examine the response PDF employing Eq. (4). We consider the stationary solution limiting
t → ∞. If this limit exists, it implies that ∂p(u, t)/∂t = 0. The useful signal is taken constant:
f(t) = f0 = const. The equation passes into an ordinary differential equation that can be
formally integrated:[((

C − 1
2
sww

)
u+
1
2
swϕ − f0

)
p(u)

]
+
1
2
d
du

[(
swwu2 − 2swϕu+ sϕϕ

)
p(u)

]
= const. (26)
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The PDF should vanish for u → ±∞ together with all derivatives. This can only be achieved if
const. = 0. It means that Eq. (26) can be rewritten after the separation the variables as follows:

dp(u)
p(u)

=

(
C + 1

2sww

)
u − 1

2swϕ − f0

−12swwu2 + swϕu − 1
2sϕϕ

du, (27)

which implies:

p(u) = Ne−q(u), q(u) =
∫ (

C + 1
2sww

)
u − 1

2swϕ − f0
1
2swwu2 − swϕu+ 1

2sϕϕ

du, (28)

where N is a normalization constant. The result of integration depends on the character of roots
of the following equation:

1
2
swwu2 − swϕu+

1
2
sϕϕ = 0 =⇒ u1,2 =

1
sww

(
swϕ ±

√
s2wϕ − swwsϕϕ

)
. (29)

It holds that Δ = s2wϕ − swwsϕϕ ≤ 0, and, therefore, two cases can occur depending on the
discriminantΔ:

(a) partial correlation of noises:Δ = s2wϕ − swwsϕϕ < 0, a1 = C − 1
2sww, a2 = C − sww.

The roots are complex conjugate, so that the integral Eq. (28) has the form as follows:

q(u) = lg

∣∣∣∣12swwu2 − swϕu+
1
2
sϕϕ

∣∣∣∣
a1

sww

+ 2
swϕa2 + swwf0

sww

√
Δ

arctg
swwu − swϕ√

Δ
. (30)

(b) full correlation of noises:Δ = 0.
Eq. (29) has one double root u1,2 = swϕ/sww and the integral Eq. (28) reads:

q(u) = lg

∣∣∣∣12swwu2 − swϕu+
1
2
sϕϕ

∣∣∣∣
a1

sww

− 2 swϕa2 + swwf0
sww(swwu − swϕ)

. (31)

Eqs. (30) and (31) show that the PDF p(u) is a non-symmetric curve for non-zero cross-
correlation of both input noises (sw,ϕ 	= 0), or if the parametric noise and the useful signal
are non-trivial. The PDF following from Eqs. (30) and (31) and substituted into Eq. (28) has
the form of a product which consists of a reciprocal value of a quadratic polynomial and an
exponential with an odd argument (sw,ϕ ≥ 0). The first part describes the curve symmetrical
with respect to the mean value, while the exponential part causes the actual eccentricity. The
curve drops faster for u descending below the mathematical mean value and slower for u rising
above the mean value. The derivatives of Eqs. (30), (31) show easily that the stationary points
of PDF lie in u → ±∞ and in the zero point of the numerator of the integrand in Eq. (28):

umax =
f0 + 1

2swϕ

C + 1
2sww

. (32)

It reconfirms an asymmetry of the exponent q(u) and, consequently, also of the response PDF,
if both cross-correlated parametric and additive noises operate in the system.

With respect to the above discussion of the exponent q(u), we revisit the formula of the
response PDF, Eq. (28), which reads: p(u) = N exp−q(u). In general, taking into account, that
various variants of q(u) exist depending on the correlation level of the input noises, the PDF
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can be evaluated. Take a note that except the general formula for p(u), three special cases are
worthy to be outlined. They follow from the general formula by means of adequate limitations:

(a) The cross-correlation of noises vanishes: swϕ = 0.

p(u) = N ·
∣∣∣∣12swwu2 +

1
2
sϕϕ

∣∣∣∣
− a1

sww

· exp
(
2f0√
Δ
arctg

swwu√
Δ

)
. (33)

The curve is non-symmetric due to the exponential part. The ratio of its influence is determined
by the useful signal level. If the useful signal vanishes, the exponential part of Eq. (33) equals
one and only the first part in absolute value remains in force. This part is symmetric with the
maximum in point u = 0. The additive noise influences the variance only, but the type of the
curve and position of its maximum in the origin is not affected. Influence of both random noises
on PDF of the response is evident from Fig. 5.

a) b)

Fig. 5. The probability density of the response for independent parametric and additive noises (swϕ = 0):
a) sww = 0.5, sϕϕ = 1.0; b) sww = 0.5, sϕϕ = 0.5

The asymmetry of the PDF increases for a rising level of the useful signal f0. For f0 = 0,
the PDF is symmetric, but it does not match the Gaussian curve. It has higher variance and
functional values especially for higher values |u|. The probability density is sharper at lower
additive noise level.

(b) The parametric noise is not present: sww = swϕ = 0.
Limiting Eq. (30) for sww → 0, swϕ → 0, one obtains:

q(u) =
Cu2 − 2f0u

sϕϕ
=⇒ p(u) = Ke−

C
sϕϕ
(u− f0

C )
2

, (34)

which is the Gaussian curve offset by f0/C outside the basic position. This shift is given by the
nominal value of the input signal and by the nominal value of the system transmission parameter.
Therefore, it is completely of the deterministic origin. The additive noise ϕ(t) determines the
variance of deflection. It can be seen that only the additive Gaussian noise leads to the genuine
Gaussian stochastic part of the system response, as it can also be seen from Fig. 6b. The shift
of its peak in the positive direction is given only by the level of the useful signal. The shape
of the curve does not change. As a comparison, Fig. 6a demonstrates the situation where the
additive noise completely disappears and only the parametric noise is acting, see Eq. (33)
for sϕϕ. For increasing values of the useful signal, the PDF is heading for to a strong asymmetry.
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a) b)

Fig. 6. The probability density of the response: a) no additive noise (sww = 0.5, sϕϕ = 0); b) no
parametric noise (sww = 0, sϕϕ = 0.5)

It is the result of influence of the exponential, the argument of which changes strongly in a
neighborhood of u = 0 from positive to negative values due to arctg function. This effect is
rising with increasing f0.

(c) The both noises disappear: sww = swϕ = sϕϕ = 0.
Limiting formula for p(u) in Eq. (34) for sϕϕ → 0, one obtains:

lim
sϕϕ→0

p(u) = δ

(
u − f0

C

)
. (35)

The task degenerates into a deterministic problem. The PDF changes into the Dirac function
with a non-zero value at the peak of the Gaussian curve in the previous case. In other words,
the deterministic response of the system occurs with probability one in this point and a zero
probability anywhere else.

5. Conclusion

The procedure of reconstruction of the perturbed measuring signal is proposed. The recon-
struction is defined in the meaning of the minimal variance of an ideal output and its mathema-
tical mean value of the signal recorded. The formulation in terms of Markov processes together
with the relevant Fokker-Planck equation is presented. Besides the general case, two particular
cases of the useful signal (constant, harmonic) in the form of the first and second stochastic
moments (mathematical mean value, variance) are discussed. Furthermore, the direct solution
of the Fokker-Planck equation is investigated as an important complementary information.

When the response of a simple linear system with random noises in parameters and additive
noises in the input signal is analyzed, a number of consequences that cannot be observed
in purely deterministic tasks appears. If the correlation of parametric and additive noises is
non-zero, the response PDF is asymmetric even if the useful signal vanishes. The response
has a non-zero mathematical mean value although the both noises are centered processes. A
similar effect can also be observed for a deterministic problem coefficient of which includes
a harmonically variable component of the same frequency as the external load. In the case
of a stochastic problem, this relationship follows from correlation between parametric and
additive noises. These effects produce the systematic error in the mathematical mean value
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of the response. This must be thoroughly considered, if, for instance, the signal serves as an
information which is subsequently integrated. Ignoring this effect would mean committing gross
errors. The stochastic response asymmetry is, therefore, conditioned by a non-zero correlation
of both noises and, of course, by existence of the parametric noise. An additive noise itself does
not lead to the response asymmetry of the PDF. The random noises in parameters are typical
for losing stochastic stability if the intensity of the noises exceeds a certain limit. However, it
is a matter of the stability definition applied, what type of the stability loss occurs and how it
physically manifests or how the system will behave in a sudden impact.

An indirect goal of the paper was to show that a relatively simple tool is able to provide
useful results, if the problem is formulated in terms of Markov processes and the relevant Fokker-
Planck equation. This strategy is based on mathematical steps free of any hypotheses. Limits of
its applicability can be easily evaluated using formulae of the variance presented in the paper.
Moreover, the authors are aware of a big potential of further development of this approach. It
implies possible steps for the future, which consist in transformation of the whole procedure into
a multi-dimensional form. This gives a possibility to work with much more complicated MDOF
systems as mathematical models of a measuring facility (nonlinear, non-smooth coefficients in
L2 functional space, etc.). However, it would be necessary to replace a number of particular
mathematical operations by more general formulations. Powerfulness of the optimal filtering is
not called into question, but the relative simplicity enables the proposed procedure to serve as a
more flexible tool in measuring data processing.
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