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Abstract

In this paper, the cracked thick-walled functionally graded cylinder has been analyzed using the finite element
method. The internally pressurized cylinder contains fully longitudinal cracks. The analyses have been done with
two, four, six and eight longitudinal cracks at the inner surface of the cylinder in four different conditions. For
this purpose, using the USDFLD subroutine coding in ABAQUS software, the variations of properties of the
functionally graded material are considered based on a power-law function model in the cracked cylinder. The
inner and outer surfaces of the cylinder are made of aluminium oxide and titanium carbide respectively. The
continuous composition of the two materials has been considered in the form of varying elastic modulus and
Poisson’s ratio along the radial direction as the power-law function. The J-integral has been used to calculate the
stress intensity factors, taking into account the variable properties at the crack tip. The effect of non-homogeneity
of the properties, the number of the cracks and cracks’ relative depth on the stress intensity factors have been
evaluated. The results have been compared with those of other available literature to verify the finite element
modelling, in which very good agreement has been found. The results show that similar to the isotropic cylinder
with multiple longitudinal cracks, in the cylinder of functionally graded material, the two-crack model has the
highest amount of stress intensity factors and the variation of Poisson’s ratio has to be taken into account in the
shallow cracks.
c© 2019 University of West Bohemia. All rights reserved.
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1. Introduction

Functionally graded materials (FGM) are component of advanced engineering material con-
sisting of two different materials. In this material, properties change as a continuous function
from one surface to the other one. In multilayer composites, varying the mechanical and thermal
properties of the layers creates a stress concentration at the interfaces which leads to debonding
between fibers and matrix or between laminas. The use of FGMs eliminates the creation of
stress concentration sources along the interfaces and reduce the mechanical mismatch. The two
materials’ composition nature is so that the material properties change from one side of the
thickness to the other one continuously. Typically, a combination of ceramic and metal is used
in these materials to utilize the thermal resistance of ceramics on one side and the flexibility and
toughness of the metal on the other side. Various industries such as aerospace and biomedicine
focus on the FGM due to its special feature. Pressure vessels and pipes containing corrosive
fluid are more prone to cracking. Consequently, examining crack’s behaviour is highly critical to
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estimate its service life and measure its safety and replacing these tubes with an FGM type can
prolong life. Amid this, risk analysis can significantly help define the requirements for selecting
the material through the probability crack creation analysis approach. Accordingly, the analysis
and determination of stress intensity factors (SIFs) is an effective step in this process.

A considerable amount of literature has been published on the isotropic material containing
fully longitudinal cracks with diverse methods in terms of its use and loading, each of which has
its own merits and demerits. Andrasic and Parker [6], Perl and Arone [17], Kirkhope et al. [13],
Shu et al. [21] determined the SIFs for longitudinal cracks using the finite element method
(FEM). All analyses have been modelled two-dimensionally in accordance with the crack type.
Cylinder’s geometric dimensions along with the number of cracks have been the criterion for
doing these researches. It is worth noting that among the number of the existing cracks, in all
papers, the cylinder with two cracks has achieved the highest SIF. In other words, the crack
number increase does not mean the structure being weak. As a result, the analysis with two
cracks is more likely to be found in other articles. The analysis of the isotropic cylinder with
one and two longitudinal cracks was carried out using the weight function method, respectively,
by Varfolomeyev and Hodulak [23] and Nabavi et al. [16]. Presenting the crack weight function
(WF) allows using for different loads. Gonzalez and Martinez [11] analyzed one longitudinal
crack using the boundary element method. Applying standard codes in the study by Miura et
al. [15] has been reviewed in the cylinder containing different kinds of crack.

The last two decades have seen a growing trend towards analyzing SIFs in the cracked
cylinders made of an FGM compared to the isotropic ones. Afsar et al. [2–5] determined the
SIFs in an FGM cylinder containing two longitudinal cracks using the FEM. The effect of
properties and geometries of the cylinder on the SIFs has investigated. Mirahmadi et al. [14]
also obtained the WF of two longitudinal cracks in an FGM cylinder. The FGM model has
considered as an exponential function. The unknown parameters in the WF meant that it was
not possible to employ the weight function in a practical situation. By solving a singular
integral equation, Çetin and Kadıoğlu [7] analyzed the circumferential embedded crack in an
FG cylinder. Exponential function employed to describe the variation of properties in the study.
Shariati and Rokhi [20] have used the extended FEM to analyse the internal crack in an FG
cylinder by a power-law function model. In the continuation, Elahi and Rokhi [9] analyzed
the thermal loading induced SIFs in this problem. Eshraqi and Soltani [10] determined the WF
for an internal crack in an FG cylinder with a power- law model using reference loadings.
Zhou [24] dealt with implementing the crack problem in an FGM using ABAQUS software.
In this paper, an implementation method with virtual crack closure technique for the analysis
of fracture problems in non-homogeneous materials like the FGM has been addressed using
UMAT and UEL subroutine in the software. Seifi and Dejam [19] investigated the variations of
the SIF and energy release rate based on the displacement correlation and modified crack closure
integral methods for external semi-elliptical cracks in an autofrettaged FG cylinder. Seifi [18]
also solved this problem using the WFM.

As seen, most of the activities performed on the longitudinal crack area in the FG cylinder
are subject to two cracks. No previous study has investigated the multiple cracks in an FG
cylinder. Besides, in defining the properties, it is limited to the elastic modulus and Poisson’s
ratio has been assumed constant. In this paper, the pressurized cylinder made of the FGM
containing multiple longitudinal cracks is analyzed using the FEM. The number of the cracks
has been considered in four various modes as 2, 4, 6 and 8 fully longitudinal cracks and has
been analysed separately. The four-crack mode has presented in Fig. 1 schematically. Choosing
these four modes has been achieved with the results evaluation approach in the FG cylinder
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Fig. 1. Scheme of thick-walled cylinder containing four fully longitudinal cracks

mode and studying its behaviour compared with that of the isotropic cylinder mode. It has
been assumed that the inner and outer surface of the cylinder is made of aluminium oxide and
titanium carbide, respectively. The FGM’s properties have been considered as the changing
elastic modulus and also Poisson’s ratio. The power-law model has included in the form of
varying properties of aluminium oxide in the cylinder’s inner surface to titanium carbide’s
properties in its external surface. USDFLD subroutine coding in ABAQUS software [1] has been
employed to implement material nonhomogeneity. The J-integral has been used to determine the
stress intensity factors in the cracked FG cylinder. In the isotropic material, the J-integral is path
independent, while in the FGM, the J-integral related to the integral path. This independence
has to be provided due to the continuous change of material properties and nonhomogeneity [8].
The dependency is suppressed by the use of the sufficiently fine mesh around the crack tip.
The effect of nonhomogeneity ratio, the crack number and the crack geometries on SIFs have
considered as an important factor in identifying the crack behaviour in the FGM. The results
have been compared with those of other literature in special cases to validate the analysis.
These results agree with the findings of other studies well and indicate the possibility to use the
above-mentioned subroutine coding.

2. Distribution of properties in functionally graded material

Since functionally graded materials have their own features, then it is imperative to consider
a model for the properties’ distribution. The nature of the FGM is defined by the change in the
volume fraction of its two structural materials in which three models of properties distribution,
namely, power-law function, sigmoid distribution and exponential function are employed more
than the other ones. In each of these models, the properties have been considered in the general
state of a non-linear combination in the volume fraction of its two materials. Although there is
no restriction to simulate the properties for the FG cylinder in the USDFLD subroutine code,
the power-law distribution, which is applicable to any volume fraction, is assumed to analyse
the cracked FG cylinder. The power-law distribution can be used to construct a wide variety of
distributions. The modulus of elasticity and the Poisson’s ratio varies continuously along the
wall-thickness of the cylinder as the following:

E(r) = Ein + (Eout − Ein)

(
r − Ri

t

)n

, (1)

ν(r) = νin + (νout − νin)

(
r − Ri

t

)n

, (2)

127



S. M. Nabavi et al. / Applied and Computational Mechanics 13 (2019) 125–136

where n stands for the volume fraction index of the FGM and characterizes the manner combining
the volume fraction of the material used in the internal surface (aluminium oxide) and the
external surface (titanium carbide) for the distribution of the elastic modulus and the Poisson’s
ratio according to Figs. 2 and 3 along the thickness, respectively. The magnitude of the volume
fraction index determines the curvature of E(r) and ν(r). The curvature can be made concave
upward for n > 1 and concave downward for 1 > n > 0. As the exponent becomes much
bigger than one, the gradient tends to be smoother near aluminium oxide. Adjusting the volume
fraction index will control the rate of transition between aluminium oxide and titanium carbide.
Depending on the type of production of the FGM, the proportion of aluminium oxide is greater
than that of titanium carbide. In the otherwords, with higher values of the volume fraction index,
the FGM tends to be aluminium oxide. Five different values of the volume fraction index have
chosen to describe the FG model as shown in Figs. 2 and 3.

Fig. 2. Variation of elastic modulus of the functionally graded cylinder along the thickness

Fig. 3. Variation of Poisson’s ratio of the functionally graded cylinder along the thickness
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3. The J-integral method for determining stress intensity factors in functionally graded
material

The nature of the J-integral in the linear elastic fracture mechanics is the energy release rate
defines as the difference in the potential energy value of a cracked structure in two different
crack lengths as follows:

J = lim
Γ→0

∫
Γ
(Wδ1i − σijuj,1)nidC, (3)

in which Γ is the arbitrary closed contour that has to start from a point on the lower crack face
and ends on its upper one. Additionally, W is the strain energy density, ni is the unit vector
component perpendicular to the closed path, σij and uj are the stress tensor and displacement
field, respectively. In practice, the values within this integral are calculated by solving the FEM
and then, J is calculated through numerical integration. The advantage of using this method
is related to elastic and plastic analysis. The SIFs for homogeneous material are obtained by
determination of the J-integral amount as follows:

K =
√

EJ/(1− ν2). (4)

The J-integral can be determined at high accuracy by selecting suitably the closed contours away
from the crack tip in homogeneous material. In contrast to isotropic material, the J-integral is
path dependent in the FGM generally. There are two approaches to overcome this problem. In
the first approach, the modified J-integral is used as the following [8]:

J =
∫

AI

(σijui,1 − Wδ1j)q,j dA −
∫

AI

W,1q dA, (5)

where AI is the enclosing the area within the arbitrary closed contour Γ and q is the weight
function. In this state, by adding the second term to the integral, the non-homogeneous effect of
the FGM is taken into account. In the second approach, based on Gu et al. [12], by choosing very
fine mesh around the crack tip, the second term of the modified J-integral containing the energy
derivative can be neglected. Moreover, this can make it possible to assume constant properties
inside elements near the crack tip in FGMs. The SIF can be determined based on this approach
as the following:

KI =
√

J Etip/(1− ν2tip), (6)

where Etip and νtip are the modulus of elasticity and Poisson’s ratio of the FGM in the po-
sition of the crack tip. In the subroutine used in ABAQUS software, it is possible to define
different properties with this method in the FGM and there is no obstacle in determining the
SIFs.

4. The finite element modeling

The ABAQUS finite element software [1] has been used to model an FGM cylinder. It is possible
to define the variation of the physical properties of the FGM using FORTRAN coding in the
USDFLD subroutine of the software. Besides, regarding the study cracks being of the fully
longitudinal type, 2-D modelling has been used. In term of the existing crack number, it is
viable to divide the cylinder into equal parts by applying the boundary conditions of symmetry
over the equivalent border. In the two and four crack modes, the two planes of symmetry have
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Fig. 4. Finite element modeling of a quarter of thick-walled cylinder containing four longitudinal cracks
in ABAQUS Software

been employed as shown in Fig. 4 for the latter one. The FG cylinder was meshed by 2D
plane strain elements with reduced integration. At the crack tip, six-node modified quadratic
singular elements with hourglass control (CPE6M) have employed and in other parts, eight-node
biquadratic elements (CPE8R) have used for meshing the models. The standard J-integral is
path-dependent when applied to the FGM directly. Instead of using the modified J-integral, in
order to determine the SIFs, the approximated model of Gu et al. [12] has employed by applying
the fine mesh around the crack tip. A sufficient fine mesh near the crack tip has been applied
to achieve the convergence of the results. The size of elements controls the error in neglecting
the nonhomogeneity effect and the the J-integral is path-independent and accrued. The size of
elements around the crack tip is one percent of the crack depth in all FE models. In other words,
the first ring of elements is arranged within the radius a/100 from the crack tip to suppress the
J-integral path dependency. The difference among the J-integral values for 10 contours is less
than 1% by applying very fine mesh around the crack tip and are accessible by determining SIF
from (4).

To verify the functionally graded material’s modelling, at first the simulation and analysis
of the thick-walled cylinder made of the FGM subjected to internal pressure have been dealt
with and the results have been evaluated and examined with the available data. Secondly, after
getting assured of the modelling material simulation accuracy in the software, the crack model-
ling analysis is addressed. For this purpose, the pressurized homogeneous cylinder containing
longitudinal cracks have analyzed and the results have compared with those of other papers.
Good agreement is observed among the results. And finally, the FG cylinder with two cracks
has been analysed with the combination of the two preceding models, which indicates high
precision and accuracy of the modelling in the subroutine coding.

4.1. Validation of functionally graded material’s modelling

The FG cylinder subjected to the internal pressure P has been considered according to the study
of Tutuncu and Ozturk [22] in order to validate the FGM modelling in the subroutine coding
of the software. In this reference, the Poisson’s ratio is constant and the variation of modulus
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of elasticity have assumed as E(r) = E0r (for n = 1 representing the nonhomogeneous ratio
of 1). The geometric dimensions and properties have been listed in Table 1.

Table 1. Properties and geometric parameters of the FGM [22]

P (MPa) E0 (GPa) Ri (mm) R0 (mm) ν
7 462 30 50 0.3

The coding derived results have been compared with those of the analytical solution of the
paper by Tutuncu and Ozturk [22], considering the nonhomogeneous ratio 1 (see Table 2). The
maximum error achieved between the numerical and accurate analytical solution is less than
0.2%, which indicates very high accuracy of the modelling in the coding.

Table 2. Comparing the stress analysis results in the pressurized FG cylinder

r (mm)
Tutuncu and Ozturk [22] Present work
σθ (MPa) σr (MPa) σθ (MPa) σr (MPa)

30.0 11.17 −7.00 11.17 −6.99
32.5 10.88 −5.60 10.88 −5.61
35.0 10.67 −4.34 10.67 −4.44
37.5 10.51 −3.24 10.51 −3.44
40.0 10.40 −2.56 10.40 −2.57
42.5 10.33 −1.80 10.33 −1.81
45.0 10.28 −1.13 10.28 −1.13
47.5 10.25 −0.53 10.25 −0.53
50.0 10.24 0.00 10.24 0.00

4.2. Validation of fully longitudinal crack modeling in the homogeneous cylinder modelling

In order to validate the fully longitudinal crack modelling, three modes of 1, 2 and 4 crack(s)
in the internally pressurized homogeneous cylinder have been modelled and compared with the
results obtained by Shu et al. [21]. The geometric dimensions and properties according to this
reference, the ones listed in Table 3, have been taken into account to compare suitably. The
normalized SIFs (KN = KI/P

√
πa) for the homogeneous ratio of zero, indicating the material

used in the code is isotropic, have been given in Table 4 and compared with the results of Shu
et al. [21] in all three crack modes and the maximum difference has been gained less than 1%.

Table 3. Geometric parameters and properties of the homogeneous cylinder containing longitudinal
crack [21]

P (MPa) E (GPa) Ri (mm) Ro (mm) ν
100 380 2 3 0.26

4.3. Validation of fully longitudinal cracks in the functionally graded cylinder modelling

Integrating the two preceding parts, it is possible to cope with modelling the cracks in the FGMs.
For this reason, the functionally graded materials containing two fully longitudinal cracks have
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Table 4. Comparing dimensionless stress intensity factors in the pressurized isotropic cylinder containing
multiple internal cracks

Number of crack(s) a/t Shu et al. [21] Present work

1

0.2 3.000 9 3.002 8
0.4 3.570 6 3.572 2
0.6 4.361 5 4.362 7
0.8 5.303 4 5.300 5

2

0.2 3.103 8 3.104 8
0.4 3.996 4 3.999 0
0.6 5.476 7 5.480 2
0.8 7.410 5 7.407 0

4

0.2 2.947 0 2.948 6
0.4 3.418 7 3.420 8
0.6 4.167 3 4.168 1
0.8 5.343 2 5.343 3

been modelled and analyzed according to the properties and dimensions of Table 5 based on
the study by Mirahmadi et al. [14]. The elasticity modulus vary has been considered as an
exponential function E(r) = Ei exp

(
Eo

Ei

r−Ri

Ro−Ri

)
. In Table 6, the values of the dimensionless

SIFs have been presented for the two longitudinal symmetric cracks resulted from the coding
and this reference. In Table 6, the values of the normalized SIFs have been presented for the
two longitudinal symmetric cracks resulted from the coding and this reference. The comparison
with each other implies very high congruence and the highest difference has obtained 0.1%.
Considering the used code validation in diverse above modes and comparing it with the available
results in the literature, it can certainly be stated that this coding can be applied for modelling
and analyzing the FG cylinder containing fully longitudinal crack.

Table 5. The geometric parameters and properties of the functionally graded cylinder containing two
opposite longitudinal cracks

P (MPa) Eo/Ei Ei (GPa) Ri (mm) Ro (mm) ν
1 10 100 50 250 0.3

Table 6. Comparing normalized stress intensity factors in an internally pressurized nonhomogeneous
cylinder with two opposite longitudinal cracks

a/t
KN

Mirahmadi et al. [14] Present work
0.2 0.925 6 0.925 5
0.3 0.975 6 0.975 3
0.4 1.077 2 1.077 0
0.5 1.240 9 1.240 6
0.6 1.490 2 1.490 1
0.7 1.867 0 1.867 0
0.8 2.455 2 2.455 2
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5. Results and discussion

Non-dimensional SIFs in the thick-walled cylinder made of the FGM with the properties power-
law distribution containing two, four, six and eight fully longitudinal cracks have been determi-
ned using the written code. The cylinder radius ratio, Ro/Ri, is 1.5 and the cylinder is subjected
to internal pressure. The cylinder is long enough to neglect the edge effects on the SIFs. The
inner surface of the FGM cylinder is made of Al2O3 with the modulus of elasticity and Poisson’s
ratio 380 GPa and 0.26, respectively and the outer one is made of TiC with the ratios as 462 GPa
and 0.19, respectively. All the material properties of the FGM are the function of radius only.
The properties power-law distribution has been studied as a change of elasticity modulus and
Poisson’s ratio for the nonhomogeneity ratios as 1, 2, 4, 8 and 10. In the power-law model,
as the nonhomogeneity ratio increases, the rate of properties change is slow initially and then
increases. The relative crack depth, a/t, varies from 0.2 to 0.8 in the analysis.

The dimensionless values of SIFs (KN = KI/P
√

πa) in Tables 7–10 have been presented
for four types of cracks in the FGM cylinder. As can be seen from the tables, in a constant
nonhomogeneity ratio in all four models, as the relative crack depth increases the values of the
dimensionless SIFs increase. The rate of this increase declines with increment nonhomogeneity
of material. However, if the material change rate from the inner to the outer surface of the
cylinder increases, the SIFs in the shallow cracks increase and in the deep cracks decline. It is
worth mentioning that as a result of the slight variation in the properties of the inner portion of
the cylinder, due to the change in the nonhomogeneity ratio, changes in shallow cracks are also
small. Therefore, in low-depth cracks, with increasing the nonhomogeneity ratio to more than
eight, the SIFs approaches a constant value.

Table 7. The variation of dimensionless stress intensity factors for FG cylinder with two longitudinal
cracks

a/t
n

1 2 4 8 10
0.2 2.857 4 2.903 5 2.979 3 3.036 1 3.046 2
0.3 3.230 6 3.249 6 3.323 3 3.391 0 3.403 5
0.4 3.748 0 3.740 7 3.802 7 3.881 3 3.897 1
0.5 4.420 5 4.390 7 4.427 0 4.510 0 4.530 0
0.6 5.259 8 5.211 4 5.213 0 5.281 2 5.307 2
0.7 6.252 3 6.198 1 6.159 8 6.186 6 6.206 0
0.8 7.346 6 7.302 4 7.242 0 7.204 3 7.198 4

Table 8. The variation of dimensionless stress intensity factors for FG cylinder with four longitudinal
cracks

a/t
n

1 2 4 8 10
0.2 2.716 7 2.758 2 2.829 8 2.883 8 2.893 4
0.3 2.930 1 2.942 8 3.008 0 3.069 3 3.080 8
0.4 3.218 0 3.205 7 3.255 0 3.322 2 3.336 0
0.5 3.579 0 3.548 0 3.570 7 3.639 9 3.653 5
0.6 4.021 2 3.978 6 3.970 0 4.019 6 4.040 3
0.7 4.566 3 4.520 6 4.483 0 4.498 8 4.513 3
0.8 5.298 0 5.259 8 5.206 2 5.173 6 5.169 2
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Table 9. The variation of dimensionless stress intensity factors for FG cylinder with six longitudinal
cracks

a/t
n

1 2 4 8 10
0.2 2.586 7 2.624 5 2.692 5 2.743 6 2.753 5
0.3 2.683 6 2.692 3 2.750 9 2.806 8 2.818 6
0.4 2.832 0 2.823 1 2.864 7 2.923 8 2.937 7
0.5 3.059 1 3.028 8 3.045 2 3.101 9 3.118 0
0.6 3.366 9 3.327 5 3.316 5 3.359 4 3.376 9
0.7 3.806 0 3.764 4 3.727 6 3.741 7 3.755 6
0.8 4.496 6 4.458 3 4.405 6 4.375 6 4.375 7

Table 10. The variation of dimensionless stress intensity factors for FG cylinder with eight longitudinal
cracks

a/t
n

1 2 4 8 10
0.2 2.474 4 2.508 8 2.573 5 2.622 4 2.632 2
0.3 2.485 4 2.491 0 2.544 2 2.596 1 2.607 1
0.4 2.559 4 2.543 1 2.578 8 2.632 2 2.644 9
0.5 2.712 7 2.683 2 2.695 5 2.745 8 2.760 4
0.6 2.970 3 2.933 2 2.920 8 2.958 7 2.974 4
0.7 3.382 1 3.343 0 3.307 6 3.319 7 3.332 5
0.8 4.080 2 4.043 3 3.992 5 3.963 8 3.964 3

Another important practical implication is that as the crack number rises, the SIFs reduce in
all different relative crack depths. This means that regarding the life estimation of the cylinders
containing several cracks, the two-crack mode has the shortest working life. There are similarities
between the attitudes expressed by multiple cracks in the FGM cylinder in this study and those
described in the isotropic cylinder by various references [6,13,17,21]. In other words, the crack
number increase inherently will cause about decreasing the SIFs in the FGM. This phenomenon
is not related to material properties and is preserved as the nonhomogeneity ratio changes. As
stated in other studies, for the isotropic cylinders, the two-crack mode is the critical state of
multicrack mode. This phenomenon similarly reappears in the non-homogeneous FG cylinder
and the two-crack mode has greater SIFs relative to four, six and eight crack modes.

The effect of Poisson’s ratio changes on the SIFs in the FG cylinder with linear variation
of properties (n = 1) is considered and presented in Table 11. It can be seen from the data in

Table 11. Comparing the effect of variation of Poisson’s ratio on dimensionless stress intensity factors in
the internally pressurized FG cylinder

a/t
Two cracks Four cracks Six cracks Eight cracks

Constant Variable Constant Variable Constant Variable Constant Variable
ν ν ν ν ν ν ν ν

0.2 2.846 5 2.857 4 2.707 4 2.716 7 2.579 5 2.586 7 2.468 3 2.474 4
0.3 3.220 6 3.230 6 2.923 0 2.930 1 2.676 3 2.683 6 2.479 6 2.485 4
0.4 3.737 5 3.748 0 3.211 9 3.218 0 2.832 2 2.832 0 2.554 6 2.559 4
0.5 4.412 8 4.420 5 3.576 8 3.579 0 3.055 7 3.059 1 2.709 5 2.712 7
0.6 5.260 2 5.259 8 4.023 8 4.021 2 3.367 2 3.366 9 2.969 2 2.970 3
0.7 6.267 8 6.252 3 4.576 6 4.566 3 3.810 8 3.806 0 3.383 8 3.382 1
0.8 7.391 0 7.346 6 5.322 0 5.298 0 4.506 7 4.496 6 4.085 4 4.080 2
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the table that in the low-depth cracks, selecting constant Poisson’s ratio will result in lower the
SIFs values relative to its variable type, while in deeper cracks, the reverse of such mode occurs.
Consequently, assuming constant Poisson’s ratio in the analysis of the FG cylinder in all the
studies reviewed here is conservative only in deep cracks.

6. Conclusion

The purpose of the current study was to determine the SIFs in the FG cylinder containing
multiple longitudinal crack using the finite element method. This was the first study to undertake
a multiple longitudinal cracks analysis in the FG cylinder. The analysis of the FGM has been
accomplished using the subroutine coding in ABAQUS software. The nonhomogeneity effect
of the material composition has been considered in the form of changing elastic modulus and
Poisson’s ratio of the cylinder with the power-law model. Four modes have been investigated
and assessed in terms of the crack number.

The results indicate that the FG cylinder with two cracks is the most critical type of mul-
tiple cracks in the assessment of the cylinder’s life with the criterion of linear elastic fracture
mechanics. It is worth noting that applying variation of Poisson’s ratio in modeling the FGM in
shallow cracks is significant.
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