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Abstract

In this paper the numerical solution of two dimensional fluid-structure interaction problem is addressed. The
fluid motion is modelled by the incompressible unsteady Navier-Stokes equations. The spatial discretization by
stabilized finite element method is used. The motion of the computational domain is treated with the aid of
Arbitrary Lagrangian Eulerian (ALE) method. The time-space problem is solved with the aid of multigrid method.

The method is applied onto a problem of interaction of channel flow with moving walls, which models the
air flow in the glottal region of the human vocal tract. The pressure boundary conditions and the effects of the
isotropic and anisotropic mesh refinement are discussed. The numerical results are presented.
c© 2010 University of West Bohemia. All rights reserved.
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1. Introduction

This paper is concerned with numerical simulation of unsteady viscous incompressible flow in
a simplified model of the glottal region of the human vocal tract with the aid of the finite ele-
ment method (FEM). The main attention is paid to the efficient computation of the flow field.
For the robust and efficient solver both the advanced stabilization (as streamline upwind/Petrov
Galerkin stabilizations, cf. [6, 7]) and solution methods (as multigrid and/or domain decompo-
sition, cf. [19, 9, 10, 13]) have to be employed.

FEM is well known as a general discretization method for partial differential equations. It
can handle easily complex geometries and also boundary conditions employing derivatives.
However, straightforward application of FEM procedures often fails in the case of incom-
pressible Navier-Stokes equations. The reason is that momentum equations are of advection-
diffusion type with dominating advection. The Galerkin FEM leads to unphysical solutions if
the grid is not fine enough in regions of strong gradients (e.g. boundary layer). In order to obtain
physically admissible correct solutions it is necessary to apply suitable mesh refinement (e.g.
anisotropically refine mesh, cf. [5]) combined with a stabilization technique, cf. [7, 3, 18, 16].

Furthermore, the time and space discretized linearized problem of the arising large system of
linear equations needs to be solved in fast and efficient manner. The application of direct solvers
as UMFPACK (cf. [4]) leads to robust method, where different stabilizations procedures can be
easily applied even on anisotropically refined grids. However, the application of direct solver
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for system of equations with more than approximately 105 unknowns becomes unfeasible in
many cases (depending on computer CPU and memory).

In that case the application of multigrid (cf. [19]) or domain decomposition methods is an
option, cf. [13]. In this paper a simplified version of multigrid method is shortly described
together with a choice of finite elements and stabilization procedures. Even when the method is
simplified, it was found to be efficient and robust enough.

The developed method is applied to the numerical solution of a channel flow modelling the
glottal region of the human vocal tract including the vibrating vocal fold. The vibrations of the
channel wall are prescribed, see [14]. Further, in order to obtain physically relevant results the
pressure drop boundary conditions are employed, cf. [8].

First, the mathematical model consisting of time dependent computational domain and in-
compressible flow model is introduced. Further, in Section 3 the time and space discretization
is described and Section 4 describes the application of a simple multigrid version. Section 5
shows the numerical results.

2. Mathematical model

The model problem consists of flow model, which describes the fluid motion in the time-
dependent computational domain Ωt, i.e. in a channel with moving walls, see Fig. 1. For the
description and the approximation on moving meshes the Arbitrary Lagrangian-Eulerian (ALE)
method is employed, cf. [12]. The geometry of the channel is chosen according [14], where a
different distance between the moving walls, i.e. the gap g(t), was considered. Further, on the
outlet part of the channel a modification of do-nothing boundary condition was applied in order
to allow the vortices flow smoothly out of the computational domain. On the inlet either the
Dirichlet boundary condition for velocity is prescribed or preferably we use the pressure drop
formulation, similarly as in cf. [8]. The presented mathematical model (and also its numeri-
cal approximation) is a slight modification of the mathematical model applied to the numerical
simulation of flow induced airfoil vibrations in our previous works, cf. [18].

2.1. Arbitrary Lagrangian Eulerian method

In order to treat the fluid flow on moving domains, the so-called Arbitrary Lagrangian Eulerian
method is used. We assume that A = A(ξ, t) = At(ξ) is an ALE mapping defined for all

Fig. 1. Computational domain and boundary parts: The inlet part of the boundary ΓI (number 7), the
outlet part of the boundary ΓO (number 8), the fixed walls ΓD (numbers 1,4,3,6) and vibrating walls ΓWt

(numbers 2, 5)

226
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t ∈ (0, T ) and ξ ∈ Ω0, which is smooth enough and continuously differentiable mapping of
ξ ∈ Ω0 onto x ∈ Ωt, x = At(ξ). We define the domain velocity wD : M → R satisfies

wD(x, t) =
∂A
∂t

(ξ, t) for all ξ ∈ Ω0 and t ∈ (0, T ), where x = A(ξ, t). (1)

Furthermore the symbol DA/Dt denotes the ALE derivative, i.e. the time derivative with re-
spect to the reference configuration. The ALE derivative satisfies (cf. [18, 11])

DAf

Dt
(x, t) =

∂f

∂t
(x, t) + wD(x, t) · ∇f(x, t). (2)

In the present paper the ALE mapping is analytically prescribed, but in the future this mapping
will be a part of the solution similarly as in cf. [18].

2.2. Flow model

Let us consider the following system of the incompressible Navier-Stokes equations in a boun-
ded time-dependent domain Ωt ⊂ R2 written in ALE form

DAv

Dt
− ν�v + ((v − wD) · ∇)v + ∇p = 0, ∇ · v = 0, in Ωt, (3)

where v = v(x, t) is the flow velocity, p = p(x, t) is the kinematic pressure (i.e. pressure
divided by the constant fluid density ρ∞) and ν is the kinematic viscosity.

The boundary of the computational domain ∂Ωt consists of mutually disjoint parts ΓD

(wall), ΓI (inlet), ΓO (outlet) and the moving part ΓWt (oscillating wall). The following bound-
ary conditions are prescribed

a) v(x, t) = 0 for x ∈ ΓD,
b) v(x, t) = wD(x, t) for x ∈ ΓWt,
c) −(p − po

ref)n + 1
2
(v · n)−v + ν ∂v

∂n
= 0, on ΓO,

d) −(p − pi
ref)n + 1

2
(v · n)−v + ν ∂v

∂n
= 0, on ΓI ,

(4)

where n denotes the unit outward normal vector, the constants pi
ref , p

o
ref denotes the reference

pressure values, and α− denotes the negative part of a real number α. In computations the
condition (4d) can be replaced by the condition

e) v(x, t) = vD for x ∈ ΓI . (5)

Finally, we prescribe the initial condition

v(x, 0) = v0(x) for x ∈ Ω0.

3. Numerical approximation

In this section the numerical approximation of the mathematical model given in Section 2 is
shown. As already mentioned the presented numerical approximation is a slight modifica-
tion of our previous works, cf. [18, 17]. Nevertheless there are several significant differences,
which were found to be important for the numerical approximation: boundary conditions used
on the inlet/outlet part of the computational domain and their weak formulation, a modified
Galerkin/Least-Squares (GLS) scheme employed for stable pair of finite elements, and the
choice of stabilizing parameters. The space discretization and its stabilization is briefly desribed
for the sake of clarity and completeness.
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3.1. Time discretization

We consider a partition 0 = t0 < t1 < . . . < T , tk = kΔt, with a time step Δt > 0, of the time
interval (0, T ) and approximate the solution v(·, tn) and p(·, tn) (defined in Ωtn) at time tn by
vn and pn, respectively. For the time discretization we employ a second-order two-step scheme
using the computed approximate solution vn−1 in Ωtn−1 and vn in Ωtn for the calculation of
vn+1 in the domain Ωtn+1 = Ωn+1. We write

∂v

∂t
(x, tn+1) ≈ 3vn+1 − 4v̂n + v̂n−1

2Δt
where x ∈ Ωn+1, (6)

where v̂n and v̂n−1 are the approximate solutions vn and vn−1 defined on Ωn and Ωn−1, respec-
tively, and transformed onto Ωn+1 with the aid of ALE mapping, i.e. v̂i(x) = vi(Ati(ξ)) where
x = Atn+1(ξ) ∈ Ωn+1. Further, we approximate the domain velocity wD(x, tn+1) by wD

n+1,
where

wD
n+1(x) =

3Atn+1(ξ) − 4Atn(ξ) + Atn−1(ξ)

2Δt
, x = Atn+1(ξ), x ∈ Ωn+1.

Then the time discretization leads to the following problem in domain Ωn+1

3vn+1 − 4v̂n + v̂n−1

2Δt
− ν�vn+1 +

(
(vn+1 − wD

n+1) · ∇
)
vn+1 + ∇pn+1 = 0, (7)

∇ · vn+1 = 0,

equipped with boundary conditions (4a–d) and the initial condition.

3.2. Weak formulation

For solution of the problem by finite element method, the time-discretized problem (7) is re-
formulated in a weak sense. The following notation is used: By W = H1(Ωn+1) the velocity
space is defined, by X the space of test functions is denoted

X = {z ∈ W : z = 0 on ΓWtn+1 ∪ ΓD},

and by Q = L2(Ωn+1) the pressure space is denoted. Using the standard approach, cf. [18], the
solution v = vn+1 and p = pn+1 of problem (7) satisfies

a(U, V ) = f(V ), U = (v, p) (8)

for any V = (z, q) ∈ X × Q. Here, the forms a(·, ·) and f(·) are defined for any U , V by

a(U, V ) =

(
3

2Δt
v, z

)
+ ν (∇v,∇z) + B(v, z) + cn(v;v, z) − (p,∇ · z) + (∇ · v, q) ,

f(V ) =
1

2Δt

(
4v̂n − v̂n−1, z

)
−

∫
ΓI

pi
refv · n dS −

∫
ΓO

po
refv · n dS,

and for any w,v, z ∈ W

cn(w,v, z) =
∫

Ωn+1

(
1
2
(w · ∇v) · z − 1

2
(w · ∇z) · v

)
dx −

(
(wD

n+1 · ∇)v, z
)
,

B(v, z) =
∫

ΓI∪ΓO

1
2
(v · n)+v · zdS,

where by (·, ·) we denote the scalar product in the space L2(Ωn+1).
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3.3. Spatial discretization

Further, the weak formulation (8) is approximated by the use of FEM: we restrict the couple
of spaces (X, M) to finite element spaces (Xh, Mh). First, the computational domain Ωt is
assumed to be polygonal and approximated by an admissible triangulation Th, cf. [2]. Based on
the triangulation Th the Taylor-Hood finite elements are used, i.e.

Hh = {v ∈ C(Ωn+1); v|K ∈ P2(K) for each K ∈ Th},
Wh = [Hh]

2 , Xh = Wh ∩ X , (9)
Mh = {v ∈ C(Ωn+1); v|K ∈ P1(K) for each K ∈ Th}.

The couple (Xh, Mh) satisfy the Babuška-Brezzi inf-sup condition, which guarantees the sta-
bility of a scheme, cf. [20].

Problem 1 (Galerkin approximations). Find Uh = (vh, ph) ∈ (Xh, Mh) such that vh satisfy
boundary conditions (4a,b) and

a(Uh, Vh) = f(Vh), (10)

for all zh ∈ Xh and qh ∈ Mh.

The Galerkin approximations are unstable in the case of high Reynolds numbers, when the
convection dominates. In that case a stabilized method needs to be applied.

3.4. Stabilization

In order to overcome the above mentioned instability of the scheme, modified Galerkin Least
Squares method is applied, cf. [7]. We start with the definition of the local element rezidual
terms Ra

K and Rf
K defined on the element K ∈ Th by

Ra
K(w̃;v, p) =

3v

2Δt
− ν�v + (w̃ · ∇)v + ∇p, Rf

K(v̂n, v̂n−1) =
4v̂n − v̂n−1

2Δt
. (11)

Further, the stabilizing terms are defined for U∗ = (v∗, p∗), U = (v, p), V = (z, q) by

LGLS(U∗; U, V ) =
∑

K∈Th

δK

(
Ra

K(w̃;v, p), (w̃ · ∇) z + ∇q
)

K
,

FGLS(V ) =
∑

K∈Th

δK

(
Rf

K(v̂n, v̂n−1), (w̃ · ∇) z + ∇q
)

K
, (12)

where the function w̃ stands for the transport velocity, i.e. w̃ = v∗ − wD
n+1. The additional

grad-div stabilization terms read

Ph(U, V ) =
∑

K∈Th

τK(∇ · v,∇ · z)K .

In the case of bounded convection velocity the choice of parameters according [7] for BB
stable pair of FE (reduced scheme) would be possible. However, in order to obtain a fast and
efficient multigrid method, the following choice of the parameters δK and τK is used

τK = ν

(
1 + Reloc +

h2
K

ν Δt

)
, δK =

h2
K

τK
,

where the local Reynolds number Reloc is defined as Reloc = h‖v‖K

2ν
.
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Problem 2 (Galerkin Least Squares stabilized approximations). We define the discrete problem
to find an approximate solution Uh = (vh, ph) ∈ Wh ×Qh such that vh satisfies approximately
conditions (4a,b) and the identity

a(Uh, Vh) + LGLS(Uh; Uh, Vh) + Ph(Uh, Vh) = f(Vh) + FGLS(Vh), (13)

for all Vh = (zh, qh) ∈ Xh ×Qh.

4. Multigrid solution of the linear system

The space-time discretized system (13) needs to be solved by some linearization scheme, e.g.
by Oseen linearization procedure described e.g. in [18] or [19]. The solution of the linearized
system (13) leads to the solution of a modified saddle point system

Sv + Bp = f, B̃Tv + Ãp = 0, (14)

where v and p is the finite-dimensional representation of the finite element approximations of
velocity and pressure, respectively. Let us mention that for the non-stabilized system (i.e. in the
case of δK ≡ τK ≡ 0) we have Ã = 0 and B̃ = B.

From the system of equations (14) the pressure degrees of freedoms can be formally elimi-
nated by formally multiplying the first equation of (14) by B̃T S−1 from the left, i.e. we get the
system of equations (

B̃T S−1B − Ã
)

p = B̃T S−1f, (15)

or with notation Ap = B̃T S−1B − Ã and g = B̃T S−1f we have

App = g,

which can be solved by the Richardson iterative method

p(l+1) = p(l) + C−1(g − App
(l)), (16)

where C is a suitable preconditioner, see e.g. [19]. Nevertheless the choice of the preconditioner
C is complicated in the case of convection dominated flows and the convergence of the scheme
(16) is in this case slow. Moreover the stabilizing terms also badly influences the convergence
rates.

In many cases and for small number of unknowns, the system can be solved with the aid
of a direct solver, which yields fast, efficient and robust scheme. We refer to direct solver
UMFPACK, cf. [4], which in the cases studied by the authors up to now [18] was efficient
for number of unknowns less then approximately 105. However, with further increase of the
number of unknowns the memory and CPU requirements grows too fast, so that the fast and
efficient solution becomes impossible. One possibility is to use the parallel implementation of
multi-frontal method, cf. [1].

Here, the solution of the system (14) is carried out by a simplified version of multi-grid
method. Only single mesh and two levels of solution (coarse and fine grid levels) are used.
The fine grid is represented by the used higher order finite elements (here Taylor-Hood finite
elements, i.e. P2/P1 approximations for velocity/pressure). The coarse grid is considered as
lower order finite elements (i.e. equal order P1/P1 approximations for velocity/pressure). The
solution on the coarse grid can be obtained with the aid of direct solver UMFPACK, which
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Fig. 2. The employed grids: the isotropic non-symmetric mesh (upper part) with 12 219 vertices and
23 709 elements and approximately 8×104 unknowns for flow problem, and the anisotropic axisymmet-
ric mesh (lower part) with 8 241 vertices and 16 000 elements (resulting in 6 × 104 unknowns)

was found to be fast enough in the studied cases. On the fine grid the multiplicative Vanka-type
smoother is used, cf. [9, 10]. This approach (i.e. the direct solver on coarse grid and Vanka-type
smoother on fine grid) resulted in an efficient and fast method, which can be easily implemented.
The performance of the multigrid method was found to be excellent for the isotropic grids. In
the case of anisotropic mesh refinement, the convergence rates nevertheless become worse. The
proper solution in this case is subject of a further study.

5. Numerical results

In this section the numerical results for air flow in a symmetric two-dimensional channel are
presented. The channel geometry described in [14] is employed here, see also Fig. 1.

5.1. Stationary solution

First, we consider the non-moving computational domain Ω, where the influence of isotropically
and anisotropically refined meshes is studied, see Fig. 2.

The following constants were used in the computations: fluid density ρ∞ = 1.225 kg m−3

and kinematic viscosity ν = 1.5 × 10−5 m2/s, the width of the inlet part of the channel
is H = 0.0176 m, the total length of the channel L = 0.16 m, and the constant gap width
g ≡ 4.4 mm.

The boundary condition (4d) in the presented computations is replaced by the condition (5),
where the constant flow velocity is presribed vD(x, t) = (U∞, 0)T at the inlet part of bound-
ary ΓI , and U∞ was chosen in the range 0.01–0.05 m s−1. The numerical results for stationary
solution and different Reynolds numbers (Re = 1

8
LU∞/ν) are presented in Figs. 3–4, where

the isolines of the magnitude of velocity are shown. The results computed on both meshes
for same Reynolds numbers show that even for low Reynolds numbers several stationary sym-
metric and nonsymmetric solutions exist. Fig. 3 (left) shows the symmetric solution obtained
on both meshes for Re = 20. For Re = 40 and Re = 50 in Figs. 3–4 on isotropic mesh
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P. Sváček et al. / Applied and Computational Mechanics 4 (2010) 225–236

Fig. 3. The isolines of flow velocity magnitudes for Reynolds number 20 (left) and 40 (right) on isotropic
mesh (upper part) and anisotropic mesh (lower part)

Fig. 4. The isolines of flow velocity magnitudes for Reynolds number 50 (left) and 70 (right) on isotropic
mesh(upper part) and anisotropic mesh (lower part)

the non-symmetric solution was obtained, whereas on the anisotropical symmetric mesh the
solution remains symmetric. For higher Reynolds number Re > 50 both solutions become
non-symmetric.

5.2. Flow in channel with vibrating vocal folds

The numerical results for flow in vibrating channel are presented for physically relevant pressure
drop, inlet flow velocity, frequency of vibrations and width of the channel, which leads to the
Reynolds numbers in the range Re = 1 000 − 3 000.

The computations were carried out for the pressure drop of 400 Pa, i.e pi
ref = 400 Pa and

po
ref = 0 Pa. The initial condition was chosen as v0 ≡ 0 and the isotropically refined mesh was

used, cf. Fig. 5. The gap oscillates harmonically around the mean gap value g = 4.4 mm in the
interval g(t) ∈ [3.2 mm, 5.6 mm] with frequency f = 100 Hz .

Fig. 5. The isotropic mesh used for multigrid solution of oscillating wall with 42 576 vertices and 84078
elements yielding approximately 4 × 105 unknowns for the flow problem
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Fig. 6. The isolines of velocity magnitude (left) and pressure (right) in a sequence of time instance (from
top to bottom, Part 1)

The results are shown in Figs. 6–7 for the time instants marked in Fig. 8. The sudden
expansion in the modelled glottal region leads to the faster flow in the vibrating narrowest
part of the computational domain and to complicated flow structures in the outlet part of the
channel. Similar effects were observed experimentally in [15]. The inlet flow velocity and
the flow velocity on the axis of symmetry at the narrowest part of the channel are shown in
Fig. 8. The both values oscillates with a similar frequency as the prescribed motion of the wall.
However, the graphs are noisy partially due to the complicated flow structures downstream.

6. Conclusion

The paper presents the developed mathematical method and applied numerical technique for
solution of fluid-structure problems encountered in biomechanics of voice production. The
method consists of the advanced stabilization of the finite element method applied considering
the moving domain. In order to obtain fast solution of the discretized problem a simplified
multigrid method was applied, which allowed solution of significantly larger system of equa-
tions compared to the previously used approach, see e.g. [18].
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Fig. 7. The isolines of velocity magnitude (left) and pressure (right) in a sequence of time instance (from
top to bottom, Part 2)

Fig. 8. The gap oscillations g(t) (upper graph), the computed flow velocity at the inlet (middle), and the
computed flow velocity in the glottal orifice (lower graph)
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The influence of the isotropic and anisotropic meshes was studied and the multigrid tech-
nique was applied on a challenging problem of flow in symmetric channel with vibrating walls.
The numerical results were presented showing the Coanda effect and complicated structure of
small vortices and large size eddies generated at the glottal region by vibrating vocal fold. Sim-
ilar vortex flow structures and Coanda effects were identified experimentally in [15].
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