
Applied and Computational Mechanics 16 (2022) 87–100

From A.Tondl’s Dutch contacts to Neimark-Sacker-bifurcation
T. Bakria,b, F. Verhulsta,∗

aMathematisch Instituut, University of Utrecht, PO Box 80.010, 3508 TA Utrecht, The Netherlands
bTNO Sustainable Urban Mobility & Safety, PO Box 96800, 2509 JE The Hague, The Netherlands

Received 26 July 2022; accepted 13 September 2022

Abstract

We present a description of the many contacts of A. Tondl with Dutch scientists involving nonlinear dynamics
models for mechanics. One of the topics is Neimark-Sacker bifurcation that leads to the presence of families
of quasi-periodic solutions that are geometrically organised and visualised in tori. A new model in the spirit
of A. Tondl, containing interaction of self-excited and parametrically excited oscillators is analysed to find this
bifurcation and quasi-periodic solutions. The analysis using averaging in combination with numerical bifurcation
tools MATCONT and AUTO produces a picture of rich dynamical phenomena with several surprises among which
a special quasi-periodic solution produced by the averaged equation.
© 2022 University of West Bohemia.
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1. Introduction

Aleš Tondl (1925–2015) was born in Znojmo (Moravia, Czech Republic) where his father was
headmaster of the local primary school. His scientific education took place in Brno and Prague,
a considerable part of his career was spent as senior researcher at the National Research Institute
for Machine Design in Běchovice (near Prague).

As a scientist Aleš Tondl was very productive but, although he experienced strong politi-
cal pressure after 1968, his communication skills, hospitality and his contacts as ”gentleman
scientist in rough times” made him also very influential in theoretical mechanics.

A long paper or even a biography on Tondl’s achievements and influence would be a suitable
enterprise but we restrict ourselves here to mentioning a few of his monographs, see Section 2,
and as a small but considerable part Tondl’s influence on nonlinear dynamics applications in the
Netherlands, Section 3. In Section 4, we describe the phenomenon of Neimark-Sacker bifurca-
tion that gives rise to almost- or quasi-periodic solutions that are organised on tori surrounding
stable or unstable periodic solutions. In Section 5, we present examples of this bifurcation in
the case of interaction of self-excited and parametric excitation, a topic typical for Aleš Tondl’s
research.

2. Monographs

Around 1960 Tondl suggested to publish a series of books by the Běchovice Research Insti-
tute. This Institute was founded to provide a theoretical background and support for industry in
Czechoslovakia. A book series would help to give the institute publicity among the community
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Fig. 1. Aleš Tondl in discussion with Yuri A. Kuznetsov after the thesis defence of T. Bakri, 2007

of engineers and maybe it would bring in some income for the institute. The first monograph
(nr. 1, 1961) was written by him on self-excitation phenomena of rotors. Of the 10 mono-
graphs by Tondl in this series on models describing nonlinear phenomena in engineering, we
mention the topics: domains of attraction of nonlinear systems, resonance problems in non-
linear systems, rotor dynamics, interaction of self-excited and parametric excitation (see Sec-
tion 5), interaction of self-excitation and forced vibrations, vibrations of rigid rotors, dynamics
of pump-turbines, compression or centrifugal pump systems.

His books in the Běchovice series emphasise modeling of mechanical systems with the
analysis of periodic solutions and their stability; many figures illustrate the theory.

Other monographs:
• Aleš Tondl, Some Problems in Rotor Dynamics, Chapman & Hall, London, 1966.
• Günter Schmidt and Aleš Tondl, Nonlinear Vibrations, Akademie-Verlag, Berlin, 1986.
• Aleš Tondl, Quenching of Self-Excited Vibrations, Academia Prague, 1991.
• Aleš Tondl, Thijs Ruigrok, Ferdinand Verhulst and Radoslav Nabergoj, Autoparametric

Resonance in Mechanical Systems, Cambridge University Press, 2000.

3. Contacts in the Netherlands

Aleš Tondl had many international contacts resulting in several scientific cooperations. A far
from exhaustive list includes long-standing relations in Moscow, Vienna and Trieste. In this
section, we will restrict us to cooperation on dynamical systems in the Netherlands.

The second author (F. Verhulst) met dr. Tondl at the 8th International Conference on Non-
linear Oscillations in Prague, 1978. Following this first meeting and the ensuing discussions
the visits to the University of Utrecht started, going on for more than 25 years. Apart from
occasional lectures in Utrecht and the Technical University of Delft, the main purpose of the
cooperation was the discussion of applications of nonlinear dynamics in engineering. For the
Utrecht Science Faculty, the focus in applied mathematics was on the development of analytic
and numerical methods. Relatively simple examples were often used to illustrate new and old
methods but Aleš Tondl introduced us to complex engineering models. These models involved
new mathematical problems and complicated phenomena, producing exciting and useful new
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research topics. This collaboration is an excellent example of how theoretical mathematical
results and insight together with exchange of ideas on actual engineering problems can be in-
spiring and fruitful.

Section 5 will illustrate this by new results. In the present section, we will summarise some
of the work that is contained in Ph.D. theses influenced by these exchanges. Nearly all thesis
chapters can be found as published papers in international journals:

• Thijs Ruigrok, Studies in parametric and autoparametric resonance, Ph.D. thesis, University
of Utrecht, 1995.

One chapter is on rotating rigid bodies with oscillating suspension point. It has a follow-up in
work with Igor Hoveijn as the problem involves versal deformation of matrices and the Whit-
ney umbrella bifurcation, see [9]. This is connected with forced coupled oscillators in sum
resonance. It is shown that certain autoparametric systems with self-excitation have the possi-
bility of Shilnikov bifurcations leading to an infinite number of unstable periodic solutions and
chaos. Part of the thesis was an inspiration for writing [18], see also [14] and [15].

• Siti Fatimah, Bifurcations in dynamical systems with parametric excitation, Ph.D. thesis, Uni-
versity of Utrecht, 2002.

A two degrees-of-freedom system is considered in 1:1 resonance with one mode in 1:2 paramet-
ric resonance. Applying averaging and numerical bifurcation analysis by CONTENT one finds
periodic and quasi-periodic solutions. Of special interest is that the averaged system admits
cascades of period doublings leading to chaotic solutions. In a second paper, the analysis is
extended by global perturbations methods that show a Shilnikov homoclinic orbit giving rise
to another type of chaotic dynamics. A third paper studies the suppression of flow-induced
vibrations, where Raleigh self-excitation is suppressed by coupling to a parametrically excited
oscillator. See [7] and [8].

• Abadi, Nonlinear dynamics of self-excitation in autoparametric systems, Ph.D. thesis, Uni-
versity of Utrecht, 2003.

The first paper focuses on the interaction of a Raleigh self-excited oscillator coupled to an au-
tonomous damped oscillator. The self-excited oscillator can be destabilised leading to periodic
solutions and a heteroclinic robust orbit; this cycle connects two saddle-sink equilibria. In a
second paper, the interaction of a dry-friction oscillator with an autonomous damped oscillator
is considered. This case involves sliding periodic solutions and a non-smooth invariant mani-
fold. Another paper studies the problem of coupling a relaxation oscillator to an autonomous
damped oscillator. Quenching of the relaxation oscillations is more difficult because of its large
Lyapunov exponent. It turns out that using generalised Liénard coordinates a certain measure
of quenching is possible. See [1] and [19].

• Taoufik Bakri, Averaged behaviour of nonconservative coupled oscillators, Ph.D. thesis, Uni-
versity of Utrecht, 2007.

This thesis continues a modern trend in quantitative and qualitative analysis. Analysis by aver-
aging or other analytic methods clarifies the part played by parameters, it pinpoints elementary
bifurcations. This can then be followed by numerical bifurcation programs like AUTO [6] and
MATCONT [12] providing more details and illustrations. The emphasis is on the study of two
and three coupled dissipative oscillators. In the first system, we have a parametrically excited
oscillator nonlinearly coupled to a damped autonomous oscillator. By averaging we find peri-
odic solutions, numerical bifurcation analysis produces a torus that by continuing on looses its
smoothness in a homoclinic structure. Another chapter describes multi-frequency oscillations
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and torus breakdown in six-dimensional space (a few more details are given in Section 5.1), see
also [2–5].

4. Tori created by Neimark-Sacker bifurcation

The creation of a torus in phase-space is of special interest in engineering, as such a torus is
usually covered by a family of almost- or quasi-periodic solutions. For this phenomenon to
happen, one needs at least three dimensions, it can for instance arise from a two-dimensional
oscillator with forcing or two coupled oscillators.

An important scenario to create a torus arises from Neimark-Sacker bifurcation. This is a
higher dimensional analogue of the Hopf bifurcation, where a periodic solution may emerge
if an equilibrium contains purely imaginary eigenvalues. A well-known example is found in
the Van der Pol equation. As a periodic solution may be produced from a bifurcation of an
equilibrium with two double imaginary eigenvalues, in a similar way a periodic solution with
two double imaginary eigenvalues may produce a torus. This is the case of a Neimark-Sacker
bifurcation, also called Hopf-Hopf bifurcation. For an instructive and detailed introduction,
see [10].

Apart from numerical tools such as AUTO [6] and MATCONT [12], an analytic tool such
as averaging (see [16]) can be useful. Suppose that we have obtained a variational equation of
the form ẏ = εf(t, y, a) by variation of constants and from this we have obtained an averaged
equation ẋ = εf(x, a) with dimension three or higher; a is a parameter or a set of parameters.
It is well-known that if the averaged equation contains a critical point with nonsingular Jaco-
bian determinant, the original variational equation contains a periodic solution. This result is
called the second Bogoliubov theorem. The first order approximation of this periodic solution
is characterised by the timelike variables t and εt, the solution is ε-close to the critical point.

Suppose now that by varying the parameter a, a pair of eigenvalues of the critical point of
the averaged system becomes purely imaginary. For this value of a, the averaged equation may
experience again a Hopf bifurcation producing a periodic solution of the averaged equation. The
typical time-like variable of this periodic solution is εt and so the period will be O(1/ε). As it
branches off, an existing periodic solution in the original equation, it will produce a torus. It is
associated with a Hopf bifurcation of the corresponding Poincaré map and the bifurcation has
a different name: Neimark-Sacker bifurcation. The result will in the three- or four-dimensional
case be a two-dimensional torus, which contains two-frequency oscillations, one on a timescale
of order one and the other on timescaleO(1/ε). A two degrees-of-freedom example is discussed
in [4], where also comparison is made with the harmonic balance method. The changes of tori
by varying a parameter leading to torus breakdown is studied in [5].

5. Interaction of self-excited and parametric excitation

One of Tondl’s many interests was concerned with the interaction of self-excited and parametric
vibrations, see [17]. We will sketch the results of a complex model published in [2]. After this
we will present new results for a model with a two degrees-of-freedom (2 DOF) interaction.

5.1. A model for quenching flow-induced vibrations

In a private communication of Tondl in 2002, a model is given for quenching undesirable flow-
induced vibrations that might be influenced or reduced by coupling to parametric vibration
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absorbers. The system for the deflections y1, y2, y3 is

m1ÿ1 + bẏ1 + k0(1 + ε cosωt)y1 − k1(y2 − y1) = 0,

m2ÿ2 + βU2(1− γẏ22)ẏ2 + 2k1y2 − k1(y1 + y3) = 0, (1)
m3ÿ3 + bẏ3 + k0(1 + ε cosωt)y3 − k1(y2 − y3) = 0.

All parameters are assumed to be positive, the flow-induced vibrations of mass m2 with flow
strength U are caused by a so-called Raleigh self-excitation term. The idea is to quench the
flow-induced vibrations of mass m2 by nonlinear coupling to two parametrically excited oscil-
lators with masses m1,m3. The analysis is complicated and leads to periodic solutions that by
Neimark-Sacker bifurcation evolve to tori. Slowly changing the parameters in this three-mass
system, one finds break-up of the tori and evolution to strange attractors. This is basically an
instructive example of the Ruelle-Takens scenario [13] that sketches the origin of turbulence by
such a sequence of bifurcations from unstable periodic solutions first to tori and then to strange
attractors. For extensive details of this flow-induced vibration model, see [2]. Omitted in [2] is
the dynamics of the case m1 = m3 as this leads to a 2 DOF system while the emphasis in [2] is
on the much more complicated 3 DOF case.

5.2. A typical simplified model

We will study in more detail a simplified model with linear interaction between the parametrical-
ly- and self-excited modes. The system is

ẍ+ εκẋ+ (1 + ε cos 2t)x− εcy= 0,

ÿ − εµ(1− y2)ẏ + y − εcx= 0.
(2)

The parameters κ, c, µ will be specified later but κ, µ > 0. In the two modes, we recognise
respectively parametric excitation and self-excited vibrations, the interaction has a simple form
that excludes the existence of x and y normal modes if c ̸= 0.

Qualitative changes in the system are signalled by bifurcations. We will be especially inter-
ested in Neimark-Sacker bifurcations that produce quasi-periodic solutions. Other bifurcation
will come up with notations like ’fold’ or ’LPC’. They play not an important part here, for
details about such bifurcations, see [10].

For general position interactions, we use new, slowly varying variables r, ψ using the trans-
formation

x = r1(t) cos(t+ ψ1(t)), ẋ = −r1(t) sin(t+ ψ1(t)),

y = r2(t) cos(t+ ψ2(t)), ẏ = −r2(t) sin(t+ ψ2(t)).

If ε = 0, the amplitudes r and phases ψ are constant. We use variation of constants to find
variational equations for amplitudes r1, r2 and phases ψ1, ψ2 for ε > 0. We leave out the
variational equations. After averaging these equations over time we find

ṙ1=
ε

2

(
−κr1 +

1

2
r1 sin 2ψ1 − cr2 sinχ

)
,

ψ̇1=
ε

2r1

(
1

2
r1 cos 2ψ1 − cr2 cosχ

)
,

ṙ2=
ε

2

[
µr2

(
1− 1

4
r22

)
+ cr1 sinχ

]
,

ψ̇2= −ε
2
c
r1
r2

cosχ,

(3)

with χ = ψ1 − ψ2.
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5.2.1. Equilibria and periodic solutions

The averaged system has general position equilibria (i.e., critical points of the vector field) if
cosχ = 0 or sinχ = ±1. From the equation for ψ1, it follows that in this case cos 2ψ1 = 0 and
sin 2ψ1 = ±1. The other two conditions for critical points are

−κr1 +
1

2
r1 sin 2ψ1 − cr2 sinχ = 0, µr2

(
1− 1

4
r22

)
+ cr1 sinχ = 0. (4)

We have various cases for the critical values

r1 =
c sinχ

−κ+ 0.5 sin 2ψ1

r2, r2 = 2

√
1 +

c2

µ(−κ+ 0.5 sin 2ψ1)
. (5)

Non-trivial equilibria can be found for sinχ = 1, c < 0, sin 2ψ1 = −1, κ > 0 and µ > 0 large
enough. Equation (5) becomes in this case

r1 =
c

−κ− 0.5
r2, r2 = 2

√
1 +

c2

µ(−κ− 0.5)
. (6)

The Jacobian matrix becomes at the non-trivial equilibrium
−κ− 1

2
0 −c 0

0 1
2
− κ 0 κ+ 1

2

c 0 6c2

2κ+1
− 2µ 0

0 − 2c2

2κ+1
0 2c2

2κ+1

 (7)

and will give us information about possible periodic solutions corresponding with the critical
points. In this case, the eigenvalues of the matrix can be computed analytically by MATHEMAT-
ICA. We find

λ1 =
−
√
−8c2[4κ(κ+ 2) + 3] + 16c4 + (1− 4κ2)2 + 4c2 − 4κ2 + 1

8κ+ 4
, (8)

λ2 =

√
−8c2[4κ(κ+ 2) + 3] + 16c4 + (1− 4κ2)2 + 4c2 − 4κ2 + 1

8κ+ 4
, (9)

λ3 =
−
√

8c2(2κ− 1)(2κ− 12µ+ 5) + 144c4 + (1− 2κ)2(2κ− 4µ+ 1)2 +R

8κ− 4
, (10)

λ4 =

√
8c2(2κ− 1)(2κ− 12µ+ 5) + 144c4 + (1− 2κ)2(2κ− 4µ+ 1)2 +R

8κ− 4
, (11)

R = 12c2 − 4κ− 4κ2 − 8κµ− 4µ− 1. (12)

It is easy to see from (8) and (9) that the real part (i.e., the part outside the square root symbol)
of λ1 and λ2 becomes zero when c = −1

2

√
−1 + 4κ2 with κ ≥ 1

2
. Along this curve in parameter

space, the term inside the square root reduces to −4κ3 − 2κ2 + k + 1
2
. This term is negative for

κ > 1
2
. This means that the Hopf curve in the averaged system and consequently the Neimark-

Sacker bifurcation curve in the original system leading to torus dynamics is given by the closed
form

c(κ) = −1

2

√
−1 + 4κ2. (13)
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Along this curve the eigenvalues λ1 and λ2 are purely imaginary. Adding a small perturbation
0 < δ ≪ 1 to c yields a transversal crossing of the imaginary axis and hence a Hopf bifurcation.
Note that this curve is independent of the self-excitation parameter µ. A second Hopf bifurca-
tion occurs as well when the term R becomes zero. Requiring the conditions for the parameters
above (i.e., c < 0, κ, µ > 0, gives the analytical closed form for the second Hopf curve

c(κ, µ) = −1

2

√
1 + 4κ+ 4µ+ 4κ2 + 8κµ

3
. (14)

Numerical analysis below will reveal that the first Hopf bifurcation is supercritical yielding
a stable torus in the original system. The second Hopf bifurcation is subcritical yielding an
unstable torus in the original system. An example of one of the periodic solutions emerging
from the Hopf bifurcations is given in Fig. 2.

The second non-trivial equilibrium of system (3) can be found for sinχ = 1, c < 0,
sin 2ψ1 = 1, κ > 0.5 and µ > 0 large enough. Equation (5) for the critical amplitudes be-
comes in this case

r1 =
c

−κ+ 0.5
r2, r2 = 2

√
1 +

c2

µ(−κ+ 0.5)
. (15)

Stability analysis of the second non-trivial equilibrium that corresponds with a periodic solu-
tion in the original system is elementary and straightforward. This makes the averaging method
for small values of ε a powerful and easy to use tool to study the stability and bifurcations of
periodic orbits without the use of sophisticated continuation software packages. The continua-
tion toolboxes will come into play later on when we want to follow the emerging tori for larger
values in the parameter space; with these toolboxes we also compute the first order normal form
coefficients to establish stability for larger values of ε. Choosing for instance ε = 1, the peri-
odic solution still exists, the analytical expressions of the Jacobian matrix and its eigenvalues

Fig. 2. (Left) A stable periodic solution of system (3) obtained using MATCONT by continuation of the
orbit emerging from the supercritical Hopf bifurcation using the parameter c as a control parameter. The
red orbit corresponds with the parameter values c = −1, k = 1 and µ = 4. (Right) We get the same orbit
by numerical integration. We took the parameter values of the red orbit with initial condition starting at
(r1, ϕ1, r2, ϕ2) = (1.117 35, 2.705 16, 1.944 95,−0.018 881 9)
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are given below 
1
4
(1− 2κ) 0 − c

2
0

0 1
4
(−2κ− 1) 0 1

4
(2κ− 1)

c
2

0 3c2

2κ+1
− µ 0

0 c2

1−2κ
0 c2

2κ−1

 . (16)

In this case, the eigenvalues at the second equilibrium can also be computed analytically using
MATHEMATICA. We find

λ1 =
−
√
−8c2[4(κ− 2)κ+ 3] + 16c4 + (1− 4κ2)2 + 4c2 − 4κ2 + 1

16κ− 8
, (17)

λ2 =

√
−8c2[4(κ− 2)κ+ 3] + 16c4 + (1− 4κ2)2 + 4c2 − 4κ2 + 1

16κ− 8
, (18)

λ3 =
−
√
8c2(2κ− 1)(2κ− 12µ− 1) + 144c4 + (1− 2κ)2(−2κ+ 4µ+ 1)2 +R

16κ− 8
, (19)

λ4 =

√
8c2(2κ− 1)(2κ− 12µ− 1) + 144c4 + (1− 2κ)2(−2κ+ 4µ+ 1)2 +R

16κ− 8
, (20)

R = 12c2 − (2κ− 1)(2κ+ 4µ− 1). (21)

Requiring the part outside the square root symbol of the eigenvalues λ1, λ2 to be zero as a
necessary condition for a Hopf bifurcation of the second equilibrium does not yield a Hopf
bifurcation. One can easily show that in this case the eigenvalues λ1, λ2 are real with opposite
signs. A Hopf bifurcation does occur when requiring the part outside the square root symbol
of the eigenvalues λ3, λ4 to become zero. In this case, the Hopf curve can again be computed
analytically. We find

c(κ, µ) = −1

2

√
(2κ− 1)(2κ+ 4µ− 1)

3
. (22)

Numerical analysis using the bifurcation analysis toolbox MATCONT reveals a subcritical Hopf
bifurcation yielding an unstable torus in the original system. This equilibrium will, therefore,
be left out of the bifurcation analysis below. In this paper, we focus on invariant tori that are
asymptotically stable and, therefore, easily detectable by numerically integration of the vector
field of the original system.

5.2.2. Numerical examples of the simplified model

Taking κ = 1, µ = 4 and c = −1
2

√
−1 + 4κ2 = −

√
3
2

.
= −0.866 025 4 along the Hopf curve

as stated above, we have a stable equilibrium with r1 = 1.080 12 and r2 = 1.870 83 and the
following eigenvalues:

Λ =

{
− i

2
√
2
,

i

2
√
2
,
1

4

(
−8−

√
22
)
,
1

4

(
−8 +

√
22
)}

. (23)

We check the transversality of the bifurcation. Adding a small perturbation δ = 0.01 to the
parameter c and keeping the other parameters constant gives the following eigenvalues:

Λ = {−0.002 870 08− 0.349 459i,−0.002 870 08 + 0.349 459i,−3.192 21,−0.825 012} .
(24)
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Subtracting δ from c yields the following eigenvalues:

Λ = {0.002 903 42− 0.357 624i, 0.002 903 42 + 0.357 624i,−3.152 73,−0.829 849} . (25)

The eigenvalues λ1 and λ2 cross transversely the imaginary axis as the critical interaction pa-
rameter c crosses the value −

√
3
2

and, therefore, we establish almost by hand the occurrence of a
Hopf bifurcation of the equilibrium in question. Numerical analysis by MATCONT with the pa-
rameter c as a control parameter yields a supercritical Hopf bifurcation (normal form coefficient
l1 = −0.025 670 407 5) at the parameter values c = −0.866 034, which is in good agreement
with the analysis above. This shows that MATCONT pinpoints the bifurcation value with very
good accuracy.

From the normal form coefficient obtained by MATCONT, we know that the emerging torus
in the original system is asymptotically stable. In Fig. 2, we show that the emerging cycle is
indeed stable as was found also by the numerical integration.

5.2.3. Bifurcation analysis of the averaged system

Various software toolboxes are available to perform a bifurcation analysis. Each of them has
advantages and drawbacks. For a concise comparison of the available bifurcation software, we
refer to [11]. In the following analysis, we made mainly use of the software packages AUTO

and MATCONT. AUTO is very fast and needs very little resources to run smoothly. It even runs
on single-board computers like the Raspberry pi. It gives at low cost a rough but accurate view
of the dynamics and bifurcations involved in the system under study. One of its drawbacks
is its incapacity of computing normal forms coefficients. MATCONT, on the other hand, does
detect more higher co-dimension bifurcations and computes normal form coefficients, but it is
slow and needs the proprietary software MATLAB to be installed to run on a machine. Here we
combine the power of both.

As can be seen from Fig. 3, the non-trivial equilibrium of the averaged system (3) is con-
tinued starting at the parameter values κ = 1.3, µ = 4, and c = −1, and using the parameter c
as the only control parameter. A Hopf supercritical bifurcation point labeled (H) is detected at
c = −1.2 as predicted by (13). A codimension 2 Hopf curve (Hopf+) is obtained from point (H)
by continuation using the parameter κ as a second control parameter. As expected, MATCONT

as well as AUTO compute the Hopf+ curve with very high precision. It fits exactly the formula
given by (13). The unstable equilibrium undergoes a second (sub-critical) Hopf bifurcation at
c = −2.424 871 2. Using κ as a second control parameter, the Hopf– curve is generated. The
numerical results here are again in complete agreement with (14). The stable cycle emerging
from the Hopf bifurcation at c = −1.2 has a period T = 14.05. It is continued using the param-
eter c as the control parameter. The cycle undergoes two branching point cycle bifurcations at
resp. c = −1.531 603 4 and c = −1.690 769 1. At these critical values, a second cycle branches
off of the stable cycle yielding two more periodic orbits in the averaged system and, thus, two T2

tori in the original system. The cycle undergoes also a (subcritical) Neimark-Sacker bifurcation
at c = −1.697 759 3 yielding an unstable T2 torus in the averaged system and hence an unstable
T3 in the original system (2). The Neimark-Sacker (NS) curve (red in Fig. 3) is obtained in
MATCONT by continuation of the NS bifurcation with κ as a second control parameter. Inter-
esting bifurcations take place on the NS curve like strong resonances R3 and R4, a Chenciner
bifurcation was also detected. These bifurcations are outside the scope of this paper and will,
therefore, be left out of the analysis. The branching cycle at c = −1.531 603 4 is also continued
with respect to the parameter c. It undergoes a series of bifurcations. See Fig. 4 (green curve).
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Fig. 3. (Partial) Bifurcation diagram of system (3) in the kc-parameter plane showing both Hopf curves
and the Neimark-Sacker (NS) bifurcation curve with the strong resonance bifurcation points R3 and R4

Fig. 4. Bifurcation diagram of the periodic orbit of system (26) together with the orbit emerging from
the supercritical Hopf bifurcation using the parameter c as a control parameter and plotted against the
period of the cycle. PD stands for Period doubling bifurcation, BPC stands for Branching Point Cycle
bifurcation, LPC indicates a Limit Point Cycle or fold bifurcation and NeS is used to label a Neutral
Saddle bifurcation
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5.2.4. Bifurcations of a special quasi-periodic solution

According to the second Bogoliubov theorem, equilibria of the averaged system (3) correspond
with periodic solutions of the original system (2). The proof of the theorem is based on the
implicit function theorem with the implication that for instance amplitudes and period are close
to these quantities of system (2) with ε = 0. The averaged system, and so the original system,
may also contain solutions that cannot be continued from the unperturbed solutions. Surpris-
ingly, the averaged system turns out to have a stable periodic orbit that is not related to any of
the equilibria found above. As we shall see, such a solution corresponds with a quasi-periodic
solution of the original system.

To be certain that we are not excluding solutions close to normal modes, we will use other
coordinates for the averaging analysis. We switch to the coordinates (x1, x2, y1, y2) instead of
the amplitude-phase coordinates by transforming

x(t)= x1(t) cos(t) + x2(t) sin(t), ẋ(t)= −x1(t) sin(t) + x2(t) cos(t),
y(t)= y1(t) cos(t) + y2(t) sin(t), ẏ(t)= −y1(t) sin(t) + y2(t) cos(t).

Averaging the variational equations over time yields the following system that is equivalent to
system (3) outside the normal modes

ẋ1= −1

4
ε(2cy2 + 2kx1 + x2),

ẋ2= −1

4
ε(−2cy1 + 2kx2 + x1),

ẏ1= −1

8
ε
[
4cx2 + µy1

(
y21 + y22 − 4

)]
,

ẏ2=
1

8
ε
[
4cx1 − µy2

(
y21 + y22 − 4

)]
.

(26)

System (26) turns out to have an asymptotically stable periodic solution that is not related to the
periodic solutions found in the Hopf bifurcations discussed above, see Fig. 4. Starting at initial
condition

(x1, x2, y1, y2) = (0.060 412, 1.503 658,−0.233 880, 1.878 305)

with parameter values c = −1.732 128, µ = 4 and κ = 1.3, a stable periodic orbit of the av-
eraged system is found with period T = 10.76 (not close to 2π). In the original system (2),
this produces a solution characterised by two periods, it is quasi-periodic. Numerical continu-
ation of this orbit with respect to parameter c yields the red curve in Fig. 4. The periodic orbit
undergoes a fold bifurcation also known as a Limit Point Cycle (LPC) bifurcation at parameter
value c = −1.610 449 5. At this point, the periodic orbit collides with an unstable cycle and
disappears. Following the unstable cycle, it undergoes a Neutral Saddle bifurcation (NeS) at
c = −1.772 976 3 and another LPC bifurcation at c = −1.871 089 1.

5.2.5. The origin of the quasi-periodic solution

A simple way to understand where this special solution in the averaged system comes from is
to consider the parameter c to be large (or taking εc as O(1) quantity). Putting for the parameter
c = c̃/ε, omitting the tilde for notational simplicity and keeping the other parameter O(1) with
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respect to ε, system (2) can be transformed into a quasi-normal form

ẍ1 +
c2

4
x1= ε

(
−2ẋ1 (c

2(κ− µ) + ẋ22µ− c2ẋ2 − 2ẋ31µ)

4c2

)
+O(ε2),

ẍ2 +
c2

4
x2=

1

16
ε

(
−8ẋ2 (c

2(κ− µ) + µ (ẋ21 + ẋ22))

c2
− 4ẋ1

)
+O(ε2).

(27)

Here, the variables x1 and x2 are exactly the same as used for the averaged system (26).
Looking for periodic solutions of system (26) is equivalent to looking for periodic orbits of

system (27) so we apply averaging and look for non-trivial equilibria. As we know now that the
normal modes are not involved, we can use slowly varying phase-amplitude variables

x1 = r1(t) cos
( c
2
t+ ϕ1(t)

)
, ẋ1 = − c

2
r1(t) sin

( c
2
t+ ϕ1(t)

)
,

x2 = r2(t) cos
( c
2
t+ ϕ2(t)

)
, ẋ2 = − c

2
r2(t) sin

( c
2
t+ ϕ2(t)

)
to find after averaging the following system:

ṙ1= − 1

64
ε
{
r1

[
µr2

2 cos 2χ+ 16κ+ 3µr1
2 + 2µ

(
r2

2 − 8
)]

+ 8r2 cosχ
}
,

ϕ̇1=
1

32r1
ε [r2 sinχ(µr1r2 cosχ+ 4)] ,

ṙ2= − 1

64
ε
{
r1 [µr1r2 cos(2χ) + 8 cosχ] + 2r2

[
8κ+ µ

(
r1

2 − 8
)]

+ 3µr2
3
}
,

ϕ̇2= − 1

32r2
ε [r1 sinχ(µr1r2 cosχ+ 4)]

(28)

with χ = ϕ1 − ϕ2. System (28) has two non-trivial equilibria when sinχ = 0. We find

r1 = r2 = 2

√
− 2κ+ 2µ− 1

3µ
, or r1 = r2 = 2

√
− 2κ+ 2µ+ 1

3µ
. (29)

A third non-trivial equilibrium emerges when cos(χ) = −4/(µr1r2) and −4/(µr1r2) ∈ [−1, 0].
We find for r1 and r2 the following expression:

r1 = r2 = 2

√
µ− κ

µ
. (30)

We conclude that system (26) has 3 periodic orbits with period T = −4π/c and amplitudes as
given above.

5.2.6. Comparison of averaging results with the numerics

Substituting the numerical values of the parameters used in the continuation (i.e., µ = 4,
κ = 1.3) in the equations above, we find the three periodic solutions of the averaged system
as predicted by the averaging method; they have respectively the amplitudes: r1 = r2 = 1.21,
r1 = r2 = 1.49 and r1 = r2 = 1.64. The periodic solution of system (26) numerically found
turns out to coincide with the third periodic orbit with amplitudes r1 = r2 = 1.64. Using MAT-
CONT the stable periodic orbit in Fig. 5 was continued for large values of the parameter c. The
periodic orbit found numerically has an amplitude that tends to 1.64 as the parameter c tends to
−∞. This is in good agreement with the analytical results obtained above, see Figs. 6 and 7.
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Fig. 5. Bifurcation diagram of the periodic orbit of system (26) as a function of the parameter c plotted
against the max(x1)

Fig. 6. Plot of the numerically computed pe-
riod (red) and the analytically predicted period
T = −4π/c (blue) of system (26) for large nega-
tive values of the parameter c

Fig. 7. Plot of the numerically computed ampli-
tude max(x1) of system (26) as function of c for
large negative values of the parameter c

6. Conclusion for the simplified system

The simplified system (2) contains self-excitation, parametric excitation and mode interaction
in its simplest form. It is remarkable that for this system a large number of bifurcational phe-
nomena can be found, with analytic and numerical methods complementing each other. The
averaging method and the numerical tools AUTO, MATCONT were used to produce basic re-
sults.
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