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bAeronautics and Aerospace Department, von Karman Institute for Fluid Dynamics, Waterloosesteenweg 72,

B-1640 Sint-Genesius-Rode, Belgium

Received 19 September 2022; accepted 11 November 2022

Abstract

The present study is focused on the application of two families of implicit time-integration schemes for gen-
eral time-dependent balance laws of convection-diffusion-reaction type discretized by a hybridized discontinuous
Galerkin method in space, namely backward differentiation formulas (BDF) and diagonally implicit Runge-Kutta
(DIRK) methods. Special attention is devoted to embedded DIRK methods, which allow the incorporation of time
step size adaptation algorithms in order to keep the computational effort as low as possible. The properties of the
numerical solution, such as its order of convergence, are investigated by means of suitably chosen test cases for a
linear convection-diffusion-reaction equation and the nonlinear system of Navier-Stokes equations. For problems
considered in this work, the DIRK methods prove to be superior to high-order BDF methods in terms of both
stability and accuracy.
© 2022 University of West Bohemia.
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1. Introduction

High-order methods are of great interest for problems of computational fluid dynamics (CFD)
because of their potential in delivering higher accuracy of the numerical solution at a lower cost
compared to conventional low-order methods. One such method is the hybridized discontinuous
Galerkin (HDG) method [10,20,21], which benefits from having fewer globally coupled degrees
of freedom (DOF) compared to the standard discontinuous Galerkin (DG) method [3, 4]. In
this work, we are interested in further extension of the existing HDG solver, which has been
developed for solving steady-state problems [29]. The main goal is to extend the solver for
generic time-dependent balance laws of convection-diffusion-reaction type with emphasis on
mathematical models arising in the field of CFD such as the systems of Euler and Navier-Stokes
equations governing compressible fluid flow.

A lower number of globally coupled DOF compared to standard DG is especially beneficial
for implicit time integration in which case large systems of linearized equations have to be
solved in each time step. The hybridized formulation introduces a new variable, usually called
λ, which is defined only on the faces of mesh elements. This procedure would usually lead to
an increase in the total number of unknowns of the resulting system of equations. However, the
method allows elimination of the primary variables and reformulation of the global system in
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terms of λ only. The remaining DOF can then be recovered locally in an element-by-element
fashion.

Applying the HDG method to an unsteady convection-diffusion-reaction equation leads to a
system of differential-algebraic equations (DAEs) of index one representing a stiff problem [27].
Therefore, the use of explicit methods for time integration is impossible and one has to choose
an appropriate implicit method for solving DAEs. In order to minimize the number of time
steps needed to achieve the desired accuracy of the numerical solution at the final time of the
simulation, we aim to use high-order methods also in time. Two families of methods are consid-
ered in this work. These are backward differentiation formulas (BDF) and diagonally implicit
Runge-Kutta (DIRK) methods. DIRK methods are often designed such that they include an
embedded method of lower order by which one can obtain another estimate of the numerical
solution in a particular time step without additional computational effort. Based on the norm
of the difference between these two solutions a time step control algorithm can be employed in
order to keep the local error below a prescribed tolerance.

The contribution of this study lies in the comparison of herein considered time-integration
methods on problems for linear convection-diffusion-reaction equations using suitably chosen
manufactured solutions designed to verify the order of convergence of the numerical solution
and other properties of a given method combined with the HDG discretization in space. Finally,
laminar compressible flow past a circular cylinder governed by the nonlinear system of Navier-
Stokes equations is studied in order to test the time step control algorithm for real fluid-flow
problems.

2. Hybridized discontinuous Galerkin method for unsteady problems

2.1. Governing equations

We consider the time-dependent case of general convection-diffusion-reaction systems of equa-
tions defined on an open bounded domain Ω ∈ Rd, d = 2. These problems can be written in the
form

∂tw +∇ · [fc(w)− fv(w,∇w)] = s(w,∇w) (1)

together with appropriate initial and boundary conditions. Here, w ∈ Rm is the vector of
conservative variables, fc : Rm → Rm×d is the convective flux, fv : Rm × Rm×d → Rm×d is
the viscous flux and s : Rm × Rm×d → Rm is the source term.

Formulation (1) covers the scalar linear convection-diffusion-reaction equation with fc =
uw, where u ∈ [L∞(Ω)]d is the velocity vector field. Another specific example used throughout
this study is the system of Navier-Stokes equations with m = 4 and

w =

 ϱ
ϱu
E

 , fc =

 ϱuT

ϱu⊗ u+ PId
(E + P )uT

 , fv =

 0
τv

τv · u+ k(∇θ)T

 , s = 0, (2)

where ϱ is the density, u = (u, v)T is the fluid velocity vector, E is the total energy per unit
volume, θ is the thermodynamic temperature, k is the thermal conductivity coefficient and
Id ∈ Rd×d is the identity matrix. The pressure P is related to the conservative variables by
the equation of state of an ideal gas in the form

P = (γ − 1)

(
E − 1

2
ϱ|u|22

)
, (3)
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where γ is the ratio of specific heats and γ = 1.4 for air. For a Newtonian fluid, using the
Stokes’ hypothesis, the viscous stress tensor is defined as

τv = µ

[
∇u+ (∇u)T − 2

3
(∇ · u)Id

]
. (4)

Furthermore, we assume the dynamic viscosity to be a function of thermodynamic temperature
determined by the Sutherland’s law µ = C1θ

3
2/(θ + C2) with C1 = 1.458× 10−6 kg/(ms

√
K)

and C2 = 110.4K.

2.2. Semi-discrete formulation

Let the computational domain Ω be partitioned into a collection of nonoverlapping elements
denoted by Th such that Ω =

⋃
κ∈Th κ. For the element edges, two different kinds of sets are

considered, which are element-oriented and edge-oriented. Let ∂Th := {∂κ\∂Ω : κ ∈ Th} be
the set of all edges of the elements, excluding the domain boundary. Next, we denote the set of
all interior edges of Th by Eh. The boundary edges are contained in set E∂

h .
Introducing an auxiliary variable q, which represents the gradient of the solution, the bal-

ance law (1) can be rewritten as a first-order system of the form

q −∇w = 0, (5)
∂tw +∇ · [fc(w)− fv(w, q)] = s(w, q). (6)

In contrast to standard discontinuous Galerkin (DG) methods, the hybridized weak formulation
is obtained by introduction of an additional unknown λ, which represents the trace of the solu-
tion at the element edges. This procedure leads to a reduction of the globally coupled degrees of
freedom compared to the DG method since it is possible to eliminate the primary variables by a
static condensation process resulting in a formulation of the global problem in terms of λ only.
In order to close the system of equations, the continuity of convective and diffusive numerical
fluxes at the edges is enforced in the weak sense.

Let Pp(D) denote a set of polynomials of total degree at most p on some domain D. For
the representation of the approximate solution xh := (qh,wh,λh), we consider the following
approximation function spaces

Σh := {τ ∈
[
L2(Ω)

]m×d
: τ |κ ∈ [Pp(κ)]m×d , ∀κ ∈ Th}, (7)

Vh := {v ∈
[
L2(Ω)

]m
: v|κ ∈ [Pp(κ)]m , ∀κ ∈ Th}, (8)

Λh := {µ ∈
[
L2(Eh)

]m
: µ|e ∈ [Pp(e)]m , ∀e ∈ Eh}. (9)

Functions τ ∈ Σh, v ∈ Vh, and µ ∈ Λh are piecewise polynomials of degree p, which can be
discontinuous across element faces (τ and v) and vertices (µ), respectively.

The hybridized weak formulation of the system, consisting of the equations for the solution
gradient qh, the solution itself wh and its trace at the element edges λh, has the following form:
Find xh ∈ Xh := Σh × Vh × Λh such that

0 = N (xh;yh)

:= (qh, τh)Th + (wh,∇ · τh)Th − ⟨λh, τh · n⟩∂Th
+ (∂twh,vh)Th − (fc,h − fv,h,∇vh)Th − (sh,vh)Th +

〈(
f̂c − f̂v

)
· n,vh

〉
∂Th

+
〈[[

f̂c − f̂v

]]
,µh

〉
Eh

+Nh,∂Ω(qh,wh; τh,vh) (10)
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holds for all yh := (τh,vh,µh) ∈ Xh. Here, we have used the abbreviation (·, ·) and ⟨·, ·⟩ to
distinguish between element-oriented and edge-oriented inner products. The jump operator for
a vector-valued function is defined as [[v]] := v+ · n + v− · n− where the signs ± correspond
to elements κ+ and κ− separated by an edge. We choose convective and diffusive numerical
fluxes corresponding to the Lax-Friedrichs flux and LDG flux [11], respectively, i.e.,

f̂c(λh,wh) = fc(λh) · n− αc (λh −wh) , (11)

f̂v(λh,wh, qh) = fv(λh, qh) · n+ αv (λh −wh) , (12)

where we assume αc and αv to be constant scalar values.
The boundary conditions are incorporated into the scheme by evaluating the exact flux func-

tions with a suitably chosen vector of conservative variables at the domain boundary wh,∂Ω and
its gradient qh,∂Ω depending on a particular type of the boundary condition such that an adjoint-
consistent scheme is retrieved [24],

Nh,∂Ω(qh,wh; τh,vh) = ⟨wh,∂Ω(wh), τh · n⟩E∂
h

+ ⟨(fc(wh,∂Ω(wh))− fv(wh,∂Ω(wh), qh,∂Ω(qh))) · n,vh⟩E∂
h
. (13)

2.3. Time integration

Now we focus on how to apply the time integration to the semi-discrete formulation. For this
purpose, we rewrite the weak formulation (10) as: Find xh ∈ Xh such that

T (∂txh;yh) +N (xh;yh) = 0 ∀yh ∈ Xh, (14)

where we split the term with the time derivative from the other terms and T (∂txh;yh) =
(∂twh,vh)Th . Since only the time derivative of variable wh appears in (14), it constitutes a set
of differential-algebraic equations (DAEs) and, hence, the classical approach of using method
of lines with some explicit scheme cannot be used. Instead, one has to choose an appropriate
implicit method for solving DAEs. Along with the HDG method, backward differentiation for-
mulas (BDF) and diagonally implicit Runge-Kutta (DIRK) methods have been first applied by
Nguyen et al. [20, 21]. For the case of BDF methods up to order three, see also the work of
Schütz et al. [25].

Applying a general k-step BDF method to formulation (14) in order to find the solution at
time tn+k results in

αk

β0∆t
T (xn+k

h ;yh) +N (xn+k
h ;yh) = −

k−1∑
j=0

αj

β0∆t
T (xn+j

h ;yh) ∀yh ∈ Xh, (15)

which needs to be solved in each time step n. The coefficients β0 and αj, j = 0, . . . , k can
be found in [27]. Note that BDF methods are stable only for k ≤ 6 and, moreover, they are
A-stable only for k ≤ 2 which can lead to instability for stiff problems when using BDF of
higher order. Furthermore, BDF methods need a suitable starting procedure in order to generate
numerical solutions in the first (k − 1) time steps. In this work, unless the exact solution of a
particular problem is known, we use the DIRK methods at the beginning of the computation.

The solution in time step (n + 1) can be determined from the solution at time step n using
an s-stage DIRK method by solving

T (xn+1
h ;yh) = T (xn

h;yh)−∆t

s∑
i=1

biN (xn,i
h ;yh) ∀yh ∈ Xh. (16)

122
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The intermediate solutions xn,i
h , i = 1, . . . , s have to be obtained by solving

1

aii∆t
T (xn,i

h ;yh) +N (xn,i
h ;yh) =

1

aii∆t
T (xn

h;yh)−
i−1∑
j=1

aij
aii

N (xn,j
h ;yh) ∀yh ∈ Xh (17)

in each stage of the DIRK method, where tn,i = tn + ci∆t. The coefficients aij , bi, and ci
determine the order of consistency q of the given DIRK scheme and are usually represented by
a table as shown in Table 1. From now on, a DIRK method of order q and number of stages s
will be denoted by DIRK(s, q).

Table 1. Butcher table of an embedded DIRK method

c1 a11

c2 a21 a22
...

...
... . . .

cs as1 as2 · · · ass

b1 b2 · · · bs

b̂1 b̂2 · · · b̂s

Note that once the intermediate solutions are known, the final step (16) is an explicit op-
eration. However, we are particularly interested in the subset of so-called singly diagonally
implicit Runge-Kutta (SDIRK) methods, which satisfy aii = γ, i = 1, . . . , s. In addition, the
stiffly accurate methods satisfy asj = bj, j = 1, . . . , s and, hence, the numerical solution in the
next time step is identical to the last-stage intermediate solution, such that the final step (16) is
not needed. In this work, three stiffly accurate SDIRK methods are considered. In particular,
we use the two-stage second-order DIRK(2, 2) method of Alexander [1], the three-stage third-
order DIRK(3, 3) of Cash [9], and the five-stage fourth-order DIRK(5, 4) method of Hairer and
Wanner [27]. The full Butcher tables of these methods are given by Tables 2–4.

Table 2. Butcher table of DIRK(2, 2) method

γ γ

1 1− γ γ

1 1− γ γ

γ =
1

2

(
2−

√
2
)

Table 3. Butcher table of DIRK(3, 3) method, γ = 0.435 866 521 508 458

γ γ

τ2 τ2 − γ γ

1 b1 b2 γ

b1 b2 γ

c1 c2

τ2 =
γ2 − 3

2
γ + 1

3

γ2 − 2γ + 1
2

b1 =
1
2
τ2 − 1

6

(τ2 − γ)(1− γ)
c1 =

τ2 − 1
2

τ2 − γ

b2 =
1
2
γ − 1

6

(γ − τ2)(1− τ2)
c2 =

γ − 1
2

γ − τ2
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Table 4. Butcher table of DIRK(5, 4) method

1
4

1
4

3
4

1
2

1
4

11
20

17
50

− 1
25

1
4

1
2

371
1360

− 137
2720

15
544

1
4

1 25
24

−49
48

125
16

−85
12

1
4

25
24

−49
48

125
16

−85
12

1
4

59
48

−17
96

225
32

−85
12

The resulting systems of (possibly) nonlinear equations (15) and (17) are solved by a damped
Newton method in each time step for the case of BDF methods and in each stage of the DIRK
method, respectively.

Application of DIRK-type methods to initial-boundary value problems can sometimes lead
to so-called order reduction. The same phenomenon also appears in the numerical solution of
some stiff problems for DAEs in which case the global convergence rate is lower than the order
of the method [27]. In such situation, the observed convergence rate is related to the stage order
r of the method.

For semi-discretized PDEs, which is precisely our case, the order reduction appears due
to the presence of boundaries of the spatial domain and the interaction between the boundary
conditions and the low-stage order information. The amount of the observed order reduction de-
pends on a particular problem and the global convergence rate is usually equal to the minimum
of the classical order of the method q and its stage order r plus some constant [16].

One of the earliest studies of this phenomenon is [26], where third- and fourth-order DIRK
methods are applied to the time-dependent Burgers’ and heat equation with either homoge-
neous or inhomogeneous Dirichlet boundary conditions discretized by finite differences. In the
inhomogeneous case, the convergence rates are of order (r + 1), while for the homogeneous
boundary conditions only the convergence of the fourth-order DIRK method is slightly affected
and the third-order method preserves the expected order of accuracy.

Some remedy to avoid these phenomena is indicated in the work of Calvo [8] or Alonso-
Mallo [2]. A promising approach for overcoming order reduction is studied in recent works [23]
and [17]. The authors suggest two ways to address this phenomenon, either modified boundary
conditions or additional order conditions for the DIRK coefficients. In the latter case, they
introduce the concept of weak stage order. In particular, [17] introduces three stiffly accurate
L-stable SDIRK methods of weak stage orders two and three. These are third-order four-stage
and fourth-order six-stage methods. As we have also encountered the order reduction for some
test problems, we, therefore, adopt the methods with weak stage order three, hereafter referred
to as DIRK(4, 3) and DIRK(6, 4).

One of the main advantages of one-step methods is that the size of the time step ∆t can
be changed between time steps without modification of the scheme. Additionally, Runge-Kutta
methods are often equipped with an additional set of coefficients b̂j, j = 1, . . . , s, which are
used to determine a second solution, usually of lower order, by replacing the coefficients bi
in (16). Such a method is then called embedded and can be used for error estimation after one

124
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time step. The time step size then can be adjusted accordingly in order to achieve some specified
error bound.

Let wn+1
h and ŵn+1

h represent the numerical solution obtained by a DIRK method of order
q in time step (n + 1) and the corresponding numerical solution of order q̂ given by the em-
bedded formula. For the embedded methods, we consider DIRK(3, 3) and DIRK(5, 4), we have
q̂ = q − 1. The local error estimate after one time step can be written as

E = ∥wn+1
h − ŵn+1

h ∥2. (18)

The numerical solution wn+1
h will be accepted only if E ≤ Tol, where Tol is defined by the

user. In this study, we compute the new time step size ∆tn+1 using the formula proposed by
Hairer and Wanner in [14]

∆tn+1 = ∆tn min

{
fmax,max

[
fmin, fsafety

( E
Tol

)−1/q
]}

, (19)

where fmax = 5, fmin = 0.2 and

fsafety = 0.9
2nmax

it + 1

2nmax
it + 2nit

(20)

with nmax
it and nit being the prescribed maximum number of Newton iterations and maximum

of actually performed Newton iterations over all stages, respectively. Moreover, the time step
size is finally selected such that ∆tmin ≤ ∆tn+1 ≤ ∆tmax.

The complete algorithm is as follows: If E ≤ Tol holds, the time step size is accepted and
the numerical solution is advanced in time with wn+1

h and a new time step size ∆tn+1 given by
(19). Otherwise, the time step size is rejected and the computation of the time step is repeated
with the time step size ∆tn+1.

3. Numerical results

3.1. Rotating Gaussian

First, we investigate a test case for the scalar linear convection-diffusion equation, which has
been studied by Nguyen et al. in [20]. This example involves the rotational transport of a two-
dimensional Gaussian pulse inside the domain Ω = [−0.5, 0.5]2. The velocity field is given
by u = (−4y, 4x), and the final time of the simulation is T = π/4, which corresponds to a
one-half rotation of the pulse in counterclockwise direction.

The exact solution for this problem is given by

w(x, y, t) =
2σ2

2σ2 + 4εt
exp

[
−(x̂− xc)

2 + (ŷ − yc)
2

2σ2 + 4εt

]
, (21)

where
x̂ = x cos(4t) + y sin(4t), ŷ = −x sin(4t) + y cos(4t). (22)

The initial center of the pulse is chosen to be (xc, yx) = (−0.1, 0) and the standard deviation of
the Gaussian distribution is set to σ = 0.1. Furthermore, we consider two different values for
the diffusivity constant, ε = 0.01 and ε = 0.001. Dirichlet boundary conditions, deduced from
the exact solution, are applied at the domain boundary.
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By means of this particular test case, we would like to verify that the temporal convergence
properties of the numerical solution are preserved for all considered time-marching methods.
The numerical solution is computed numerous times with successively halved but fixed time
step size ∆t starting with ∆t = T/8. For the representation of the solution on each mesh
element, polynomials of degree p = q + 1 are assumed, where q is the design order of a
particular time-integration method. Moreover, the mesh size is also successively halved in both
spatial directions such that the ratio of time step size and the mesh size is kept constant. Based
on the numerical experiments, this choice is sufficient for the spatial error to be enough such
that the overall error is governed strictly by the temporal discretization error.

The results for the case of BDF methods are presented in Fig. 1a–b. One can see that up
to BDF of order five, the numerical order of convergence corresponds to the theoretical order
for both ε = 0.01 and ε = 0.001. Even in this linear problem, oscillations arise for the case
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(a) BDF, ε = 0.01
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(b) BDF, ε = 0.001
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(c) DIRK, ε = 0.01
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(d) DIRK, ε = 0.001

Fig. 1. Convergence study for the rotating Gaussian test case
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of BDF6 in the bottom part of the domain as the time step size is decreased and, hence, the
convergence rate fails to match the theoretical one in the asymptotic regime. In practice, due to
weaker stability properties of the BDFk method with k > 2, these methods are rarely used for
problems related to fluid dynamics [5]. Analysis of this phenomenon has been done in [6, 7],
where the authors introduce BDF-ADI (Alternating Direction Implicit) methods as a remedy to
this issue.

According to Fig. 1d, the numerical solution is qth-order accurate in time for all considered
DIRK(s, q) methods and ε = 0.001. The same situation occurs for ε = 0.01 depicted in Fig. 1c
except for the DIRK(5, 4) method. In this case, as the time step size is decreased, the con-
vergence of the numerical solution deteriorates from the expected behavior and second-order
convergence is achieved. This is in complete agreement with the order reduction observed by
Verwer [26] since the stage order of DIRK(5, 4) is r = 1 as discussed in Section 2.3. No-
tice that the DIRK(6, 4) method, which has weak stage order three, preserves the fourth-order
convergence of numerical solution and does not suffer from order reduction.

3.2. Sine wave

Since the DIRK(6, 4) method, Fig. 1c, reports expected convergence rate, the problem is not
on the side of the implementation of boundary conditions. Hence, we would like to show the
the order reduction seen for DIRK(5, 4) is indeed related to the presence of the boundary of the
computational domain.

Let us assume a solution of linear convection-diffusion-reaction equation, which is periodic
on the unit square Ω = [−0.5, 0.5]2 and u = (1, 1). Let the manufactured solution have the
form of a 2D sine wave, which travels diagonally through the domain and decays in time with
respect to the diffusivity constant ε = 0.01,

w = sin [2π (x− t)] sin [2π (y − t)] exp (−εt) . (23)

The corresponding source term is given by

s = ε
(
8π2 − 1

)
sin [2π (x− t)] sin [2π (y − t)] exp (−εt) . (24)

A triangular mesh with 512 elements and p = 5 polynomials are used to perform the temporal
convergence study measured at final time T = 1 starting with time step size ∆t = 0.1.

First, we set the Dirichlet boundary conditions deduced from the exact solution as in the
rotating Gaussian test case. In Fig. 2a, we again observe the order reduction for the DIRK(5, 4)
method such that the order of convergence in the asymptotic regime corresponds to (r+1), i.e.,
second order. Since the exact solution is periodic in space, we can reformulate the problem by
assuming periodic boundary conditions. The numerical solution of both problems then should
be equivalent. However, according to Fig. 2b, this is not the case in terms of convergence and
the theoretical orders of convergence are reached for all DIRK methods including DIRK(5, 4).

3.3. Variable time step size

In order to analyze the behavior of the time step size control algorithm, we assume a manufac-
tured solution, whose time scale is changing over time. Let the solution of a linear convection-
diffusion-reaction equation be given by a sine wave on the unit square Ω = [0, 1], whose ampli-
tude depends on the time variable t in a special way

w = sin (πx) sin (πy) cos [12πt+ π sin (2πt)] . (25)
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Fig. 2. Convergence study for the sine wave test case with two types of boundary conditions, ε = 0.01

The amplitude takes the form of a compound goniometric function of time such that the fre-
quency of this function decreases on time interval (0, 0.5) and increases on (0.5, 1) in the oppo-
site way. The exact solution at center point xc = (0.5, 0.5) of the domain is plotted in the upper
graph of Fig. 3. The reason for using this solution to analyze the time step adaptation algorithm
is that the time step size should be adjusted according to the local slope of the solution in order
for the estimated error to satisfy the prescribed tolerance. We should, therefore, observe a grad-
ual increase of the time step size up to t = 0.5 and a gradual decrease in an almost symmetrical
way towards t = 1.

The source term is derived in the following form:

s = π cos(ξ)
(
cxsy + sxcy + 2πεsxsy

)
− 2π sin(ξ) [6 + π cos(2πt)] sxsy, (26)

where

sx = sin(πx),

sy = sin(πy),

cx = cos(πx),

cy = cos(πy),
ξ = 12πt+ π sin(2πt). (27)

Next, we set ε = 0.05 and we use a triangular mesh with 800 elements together with p = 3
polynomials. Here, we study the effect of the absolute tolerance Tol, which is defined by the
user. Homogeneous Dirichlet boundary conditions are assumed at the boundaries of the domain
Ω and, hence, the order reduction of DIRK methods is avoided. For every case, we set the initial
time step size to ∆t0 = 0.01 and ∆tmin = 10−13, ∆tmax = 1 to fully examine the adaptation
algorithm.

The evolution of time step size and L2-error norm of the numerical solution are depicted
in Fig. 3 for the case Tol = 10−5. The black crosses represent the situation for DIRK(5, 4),
where the time step is rejected and recomputed with a smaller time step size ∆t. In the case of
DIRK(3, 3), the time step is rejected only two times right at the start of the computation. The
steep decrease of ∆t at the end of the simulation is introduced in order to accurately reach the
final time T = 1.
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Fig. 3. Time step size adaptation, Tol = 10−5

3.4. Flow past a circular cylinder

The last test case is a viscous laminar flow over a circular cylinder governed by the system of
Navier-Stokes equations. The freestream conditions correspond to zero angle of attack, Mach
number Ma = 0.2 and Reynolds number Re = 100 based on the cylinder diameter of unit
length. Under these conditions, vortices are periodically shed from lower and upper parts of
the cylinder surface and form the famous von Karman vortex street in the wake of the cylinder.
Since the exact solution for this case is not known, the analysis will be rather qualitative and the
achieved results will be compared to data of other authors by means of drag and lift coefficients
of the cylinder CD and CL.

No-slip boundary condition is prescribed on the surface of the cylinder. The outer domain
boundaries extend to 20 units away from the center of the cylinder and characteristic far-field
boundary conditions are assumed. The size of the domain has been determined such that its fur-
ther enlargement does not lead to a significant change in the mean value of the drag coefficient
obtained from the developed flow field.

The computational mesh depicted in Fig. 4 consists of approximately 4 000 triangular ele-
ments and it is refined along the cylinder surface to appropriately resolve the boundary layer, as
well as in the wake region to capture the vortex shedding. In order to test the time integration
methods, we use p = 4 polynomials to represent the solution on a single element and the initial
conditions are taken from the freestream values of the conservative variables. Thus, the vortex
shedding starts to be fully developed and periodic in the time interval t = (400, 700) depending
on the size of the time step. Hence, we assume the final (non-dimensional) time of the compu-
tation T = 1000. Contours of vorticity magnitude |∂xv − ∂yu| at the final time are shown in
Fig. 5.

We solve the problem using BDF2 and second-, third- and fourth-order DIRK methods of
stage order one with three temporal refinements using a fixed time step size, namely ∆t = 2,
1, 0.5. Note that BDFk methods with k > 2 are not stable for this particular test case. The
results obtained by each time-integration method are analyzed on the time interval [800, 1 000],
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(a) Overall view (b) Detail in the vicinity of the cylinder

Fig. 4. Triangulation of the domain for flow past cylinder test case

Fig. 5. Instaneous vorticity contours at t = 1000

which roughly corresponds to 8 periods in lift coefficient and 16 periods in drag coefficient. The
mean drag coefficient CD, deviation from the mean of both drag and lift coefficients C ′

D, C ′
L and

the Strouhal number St = fL/u∞ are compared with results available in the literature, listed in
Table 5. Here, f is the vortex shedding frequency, which is deduced from the Fourier transform
of the periodic behavior of the lift coefficient CL. Note that the results of Franciolini et al. [13]
and Liang et al. [18] are obtained by solving the system of Navier-Stokes equations describing
the flow of a compressible fluid with Ma = 0.2 as in our case, while Ding et al. [12], Kang [15]
and Meneghini et al. [19] assumed incompressible fluid flow. The result of Williamson [28] is
measured by experiment.

The last tests are related to the embedded DIRK methods. The time step control algorithm is
used with three different values of Tol = 10−m with m = 3, 4, 5, while the spatial discretization
remains the same as before. We set ∆tmin = 0.01 and ∆tmax = 5. The lower bound is chosen
in order to prevent the time step size to become extremely small during the initial phase when
the boundary layer evolves. On the other hand, a reasonable upper bound has to be set for ∆t
to avoid obtaining a steady solution. The initial time step size ∆t0 is set to 1 which results in a
few rejected time steps at the beginning of the computation.

The time step adaptation algorithm is analyzed in Table 6. Besides the cumulative number of
Newton steps, we list also the overall number of GMRES iterations needed to drop the relative
residual of the linearized system to 10−7 in each Newton iteration. One can see that even though
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Table 5. Comparison of results from other authors and present results for flow past a cylinder at Re = 100

∆t CD C ′
D C ′

L St

Franciolini et al. [13] – 1.352 8 – – 0.164 1
Liang et al. [18] – 1.365 0.008 6 0.232 0.164
Ding et al. [12] – 1.35 0.01 0.287 0.166
Kang [15] – 1.33 – 0.32 0.165
Meneghini et al. [19] – 1.37 – – 0.165
Williamson [28] – – – – 0.164

BDF2
2.0 1.332 3 0.006 2 0.260 9 0.150 8
1.0 1.364 1 0.009 4 0.309 6 0.161 7
0.5 1.364 6 0.009 4 0.328 6 0.164 6

DIRK(2, 2)
2.0 1.363 9 0.010 5 0.322 9 0.163 9
1.0 1.369 8 0.009 7 0.333 5 0.165 1
0.5 1.369 8 0.009 8 0.333 2 0.165 6

DIRK(3, 3)
2.0 1.363 8 0.009 2 0.320 7 0.164 6
1.0 1.368 9 0.009 8 0.331 3 0.165 3
0.5 1.369 6 0.009 9 0.332 6 0.165 6

DIRK(5, 4)
2.0 1.369 8 0.001 0 0.331 1 0.165 6
1.0 1.369 8 0.009 9 0.332 9 0.165 6
0.5 1.370 0 0.009 6 0.325 0 0.165 6

Table 6. The effect of Tol for flow past cylinder at Re = 100

Tol
Accepted Rejected

∆t
Newton GMRES

CDtime steps time steps steps iterations

DIRK(3, 3)
10-3 314 2 3.18 3 649 42 616 1.349 7
10-4 813 2 1.23 9 214 71 925 1.368 7
10-5 1 888 2 0.47 18 398 93 913 1.369 8

DIRK(5, 4)
10-3 320 3 3.13 6 416 62 376 1.368 7
10-4 605 2 1.65 11 092 77 409 1.369 9
10-5 1 073 4 0.93 19 221 104 560 1.369 9

the DIRK(5, 4) method results in higher mean time step size and, hence, a smaller number of
time steps, the number of Newton steps is still higher than for DIRK(3, 3) and it is, therefore,
more computationally demanding. However, the mean drag coefficient is well behaved already
with Tol = 10−4, while Tol = 10−5 is needed for DIRK(3, 3) to reach the same value.

The evolution of time step size is plotted in Fig. 6. We can see that once the boundary layer
is evolved, the time step size starts to gradually grow to ∆tn = ∆tmax, which is followed by
a gradual decrease around t = 300. The detailed view shows the history of ∆tn on the time
interval [800, 1 000], where the behavior more or less regularly follows the periodic nature of
the flow.

131
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Fig. 6. Time step evolution of embedded DIRK methods with Tol = 10−5

4. Conclusions

In the present paper, the HDG method was extended for time-dependent balance laws using two
families of time-integration schemes, namely backward differentiation formulas and diagonally
implicit Runge-Kutta methods.

We have seen that high-order BDF methods with k > 2 steps fail to provide reliable solu-
tions for problems of practical importance due to their weaker stability properties. On the other
hand, both BDF1 and BDF2 can be safely coupled with HDG discretization. Being only first-
and second-order accurate, respectively, one may need to use a sufficiently small time step size
if the temporal resolution is of great interest for a particular application.

In such situations, better accuracy can be achieved using DIRK methods, which come at
the price of higher computational complexity since the nonlinear system of equations has to
be solved multiple times during a single time step, depending on the number of Runge-Kutta
stages of a given method. Although the DIRK methods perform very well in terms of stability,
the test cases have shown that there can also be a mismatch in the observed order when solving
initial-boundary value problems for PDEs. The order reduction phenomenon can cause the loss
of advantages over lower-order BDF methods in cases, where the boundary conditions depend
strongly on the solution itself or explicitly on time.

Since this phenomenon depends on the stage order of the DIRK method, a remedy to this
problem has been proposed by using high weak stage order methods. We have shown that with
DIRK(4, 3) and DIRK(6, 4) introduced in [17], the order reduction can be avoided for the test
cases investigated in this work. However, these methods have an increased number of stages
and, hence, the use of these methods is recommended only in situations, where the boundary
conditions can have a significant impact on the solution accuracy. A preliminary assessment of
such situations is of course not trivial and may require some numerical tests.

The other advantage of DIRK methods lies in using time step size adaptation based on the
evolution of the solution itself. The embedded DIRK methods can easily outperform the fixed
time step solution approach in terms of work needed to reach a specified error tolerance as seen
in the flow past cylinder test case.

Ongoing work is focused on the coupling of the solution of time-dependent problems with
the anisotropic mesh adaptation, which has been developed for steady equations [22]. The
primary goal is to properly resolve the shock waves or regions of high solution gradients that
are present in the flow field.
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