Possibility of identification of elastic properties in laminate beams with cross-ply laminae stacking sequences
Abstract
The goal of this work is to show the possibility of the identification of laminate beam specimens elastic properties with cross-ply laminae stacking sequences using prescribed eigenfrequencies. These frequencies are not determined experimentally for the identification of laminate properties in this paper but they are calculated numerically by means of the finite element (FE) software MSC.Marc. The composite material properties of a FE model based on the Euler-Bernoulli theory have been subsequently tuned to correlate the determined frequencies in cross-ply laminate beams with the eigenfrequencies obtained by the software package. A real-coded genetic algorithm (GA) and a micro-genetic algorithm (mGA) are applied as the inverse technique for the identification problem. Because a small efficiency of the GAs in searching for Poisson's ratio values was found, this parameter and the in-plane shear modulus have been estimated by using the law of mixtures. Some numerical examples are given to illustrate the proposed technique.
Keywords
cross-ply laminate; beam; genetic algorithm; inverse technique; finite element model