
Applied and Computational Mechanics 8 (2014) 115–128

Double pendulum contact problem
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Abstract

The work concerns contact problems focused on biomechanical systems modelled by a multibody approach. The
example is modelling of impact between a body and an infrastructure. The paper firstly presents algorithm for
minimum distance calculation. An analytical approach using a tangential plain perpendicular to an initial one is
applied. Contact force generated during impact is compared by three different continuous force models, namely
the Hertz’s model, the spring-dashpot model and the non-linear damping model. In order to identify contact
parameters of these particular models, the method of numerical optimization is used. Purpose of this method is to
find the most corresponding results of numerical simulation to the original experiment. Numerical optimization
principle is put upon a bouncing ball example for the purpose of evaluation of desirable contact force parameters.
The contact modelling is applied to a double pendulum problem. The equation of motion of the double pendulum
system is derived using Lagrange equation of the second kind with multipliers, respecting the contact phenomena.
Applications in biomechanical research are hinted at arm gravity motion and a double pendulum impact example.
c© 2014 University of West Bohemia. All rights reserved.
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1. Introduction

Contact or impact is a very frequent phenomenon that occurs when two or more bodies undergo
a collision. A contact problem arises in numerous engineering applications, such as multibody
dynamics, robotics, biomechanics and many others. Impact in biomechanical research studies
the consequences to the human body impact like a car crash, pedestrian impact, falls and sports
injuries or contact in forensic applications. This field motivates engineers and designers to de-
velop better safety systems for people exposed to impact injuries. Virtual human body models
start to play an important role in the impact biomechanics. Multibody models can evaluate
human body kinematics under external loading quickly. Detailed deformable models can then
simulate tissue injuries, however these models spend a lot of computational time. Thus articu-
lated rigid bodies can be sufficient tool for the first approximation and they might predict long
duration global human body behaviour in very short time. For such models, contact modelling
and contact parameters evaluating are crucial aspects of a successful description.

This work describes double pendulum as a simple articulated rigid body system based on
multibody approach, e.g. [10] or [12]. Author uses Lagrange equation with multipliers to eval-
uate equations of motion. Derivation of an impact algorithm using various contact force models
is demonstrated. The solution of contact problems is very complex as is shown e.g. in [8]. The
three implemented contact force models are Hertz model, spring-dashpot model and non-linear
damping model [5], respectively. This work also presents an algorithm for minimum distance
calculation between a body and a plain using analytical approach based on the plain tangential
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to the body. Principle of numerical optimization is applied on a simple mechanics example of
a bouncing ball in order to evaluate contact parameters according to a real system. Optimized
values of contact force parameters are used in a bouncing ball example and the results of sim-
ulations are presented. The double pendulum system is assumed to be a model of a human
arm. The results were compared with 2D approach model of a human arm and also with an ex-
periment. Possibilities of further biomechanics applications are demonstrated using the double
pendulum contacting a plain example.

2. The method

2.1. Double pendulum model

The double pendulum is assumed to be composed by two ellipsoids constrained together. Both
ellipsoids have semi-principal axes aij , mass mi and moments of inertia Iij , i ∈ {1, 2} and
j ∈ {1, 2, 3}. The global coordinate system x1 = [x1, y1, z1] is defined to be a Cartesian right
handed coordinate system with an origin at frame point of the first pendulum (joint). While x2

and x3 are local coordinate systems of particular bodies with origin located at the centre of the
bodies. The two bodies are linked with a spherical kinematic joint together and the first one is
linked to a rigid frame also with spherical joint. Whole system of bodies is shown in Fig. 1 and
the coordinate systems are displayed.

2.1.1. Spherical joint

A spherical joint is a type of a primitive kinematic constraint with three rotational degrees of
freedom.

Fig. 1. Double pendulum
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Spherical motion can be considered as three independent rotations, namely precession
around the z axis represented with angle ψ, nutation around the actual x axis represented with
ϑ and rotation around the actual z axis represented by angle ϕ. The three independent spatial
motions can be described by transformation matrices, namely the

Spre(ψ) =

⎡
⎣ cos (ψ) − sin (ψ) 0

sin (ψ) cos (ψ) 0
0 0 1

⎤
⎦ , (1)

Snut(ϑ) =

⎡
⎣ 1 0 0

0 cos (ϑ) − sin (ϑ)
0 sin (ϑ) cos (ϑ)

⎤
⎦ , (2)

Srot(ϕ) =

⎡
⎣ cos (ϕ) − sin (ϕ) 0

sin (ϕ) cos (ϕ) 0
0 0 1

⎤
⎦ . (3)

Transformation formula in case of a spherical motion can be written using coordinates of centre
of gravity and multiplication of precession, nutation and rotation matrices. Thus the general
transformation of any point from local to a global coordinate system is described as

x1 = xs + Spre(ψ) Snut(ϑ) Srot(ϕ) x2, (4)

where Spre(ψ), Snut(ϑ) and Srot(ϕ) are transformation matrices of precession, nutation and
rotation, respectively. x2 are coordinates of a point at the body expressed in local coordinate
system, x1 represents coordinates of this point in the global coordinate system and xs are
coordinates of centre of gravity of body expressed in the global coordinate system. Equation (4)
can be rewritten as

x1 = xsi + S1i(ψi, ϑi, ϕi) xi, i ∈ N, (5)

where S1i is a transformation matrix between local body-fixed coordinate system i and global
coordinate system 1.

Since the system here considers two bodies, two local body fixed coordinate systems are
required, and the global coordinates x1 of any point can be defined:

• The first body global coordinates: i = 2

x1 = xs2 + S12(ψ2, ϑ2, ϕ2)x2. (6)

• The second body global coordinates: i = 3

x1 = xs3 + S13(ψ3, ϑ3, ϕ3)x3, (7)

where xs2 = [xs2 , ys2, zs2 ]
T represents coordinates of centre of gravity of the first body and x2

are coordinates of the particular point in the local coordinate system of the first body. xs3 =
[xs3, ys3, zs3]

T are coordinates of centre of gravity of the second body and x3 are coordinates
of a point in the local coordinate system of the second body. Variables ψi, ϑi, ϕi, i ∈ 2, 3 are
known as Euler’s angles [8].

Vector of generalized coordinates of the whole system is defined as

q = [xs2 , ys2, zs2 , ψ2, ϑ2, ϕ2, xs3, ys3, zs3, ψ3, ϑ3, ϕ3]
T .
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The set of kinematics constraint equations can be defined as

Φ =

[
Φ1

Φ2

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

Φ1

Φ2

Φ3

Φ4

Φ5

Φ6

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

xs2 + S12

⎡
⎣ 0

0
−a13

⎤
⎦

xs2 + S12

⎡
⎣ 0

0
a13

⎤
⎦− xs3 − S13

⎡
⎣ 0

0
−a23

⎤
⎦

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦
. (8)

This generates six equations of the kinematics constraint in term of the local coordinates

Φ(q, t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

xs2 − a13 sin (ϑ2) sin (ψ2)
ys2 + a13 cos (ψ2) sin (ϑ2)

zs2 − a13 cos (ϑ2)
xs2 − xs3 + a13 sin (ϑ2) sin (ψ2) + a23 sin (ϑ3) sin (ψ3)
ys2 − ys3 − a13 cos (ψ2) sin (ϑ2)− a23 cos (ψ3) sin (ϑ3)

zs2 − zs3 + a13 cos (ϑ2) + a23 cos (ϑ3)

⎤
⎥⎥⎥⎥⎥⎥⎦
= 0, (9)

where aij represent a length of semi-principal axes.

2.2. Equations of motion

Equations of motion are derived using Lagrange equations of second kind with multipliers.
Second derivatives on the kinematics constraints were added to the system and these formulate
equation of motion of the double pendulum system[

M ΦT
q

Φq 0

] [
q̈
−λ

]
=

[
f (q, q̇, t)
γ(q, q̇, t)

]
, (10)

where M is mass matrix, q̈ represents generalized accelerations vector, λ is vector of La-
grange’s multipliers, Φq is the Jacobian of the vector of constraints, f and γ are vectors of
external forces (including contact force), and rest after derivation, respectively. Equation (10)
is a differential-algebraic equation of second order. An important classification of differential
equations is whether it is a stiff or a non-stiff problem, associated with eigenfrequency distri-
bution [4]. The example here is considered to be stiff problem and this can cause difficulties
during numerical integration. Thus the special numerical solvers are implemented.

To express accelerations q̈ and solve the equation by numerical integration, the approach
called elimination of the Lagrange multipliers is applied. Using this technique, following sys-
tem is obtained[

u̇
v̇

]
=

[
v
q̈

]
=

[
q̇

M−1{f + ΦT
q (ΦqM

−1ΦT
q )

−1(γ − ΦqM
−1f )}

]
. (11)

Equation (11) can be solved using standard techniques of numerical integration, however it
has some undesirable troubles. It might be numerically unstable for a certain properties, thus
Baumgarte’s stabilization method solving bad stability is applied [4].

This brings new formulation of the first order differential-algebraic equation, which can be
numerically solved[

u̇
v̇

]
=

[
v
q̈

]
=

[
q̇

M−1{f + ΦT
q (ΦqM

−1ΦT
q )

−1(γ − 2αΦ̇− β2Φ− ΦqM
−1f )}

]
. (12)

Constants α and β were chosen based on literature [4]. MATLAB [6] software is applied
to calculate numerical solution. There are some suitable numerical ODE solvers for the stiff
problems implemented in MATLAB, such as ODE15s, ODE23t, ODE23tb.
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J. Špička et al. / Applied and Computational Mechanics 8 (2014) 115–128

2.3. Arm gravity motion

Double pendulum system is used as an approximation of a human arm. Valdmanová in [13]
established a 2D model of an arm based on multibody approach. This model represents the main
parts of a human arm, namely the upper arm, the forearm and the hand. Later on, the model
is simplified into a two bodies system only, since the motion between forearm and hand can
be neglected. Valdmanová compared in her work a simulation with a result of an experiment.
Joints between bodies are modelled to be joints with an internal stiffness. Thus the bodies
load with torques representing rigidity of a shoulder and of an elbow, respectively. Geometric
properties of the bodies are set of from [13]. Passive bending moments of joints are defined by
curves based on [9].

Initial position of the arm corresponding to an experiment is based on anthropometric data,
namely the driver’s position while holding a steering wheel. Initial conditions of the arm are
shown in Fig. 2, where angles ϕ1 = −45◦ and ϕ2 = 23◦.

Fig. 2. Initial position of arm

2.4. Contact calculation

This work concerns possible impact between any ellipsoid of the double pendulum and a plain.
If the bodies get into a collision, the crucial question is to evaluate impact performance of a
contact force. Several approaches for a contact force expression were developed. The concept
of this work is to use a continuous contact force model, where the contact force is a function
of local penetration δ and local penetration velocity δ̇, respectively. Three contact force models
are presented here, namely Hertz model, spring-dashpot model and non-linear damping model,
respectively. To capture the effect of contact force in case of interaction bodies, the penetration
depth is calculated. To identify whether the bodies are getting into a collision, the minimum
distance between them is required. As long as the distance is positive, the bodies are disjointed.
Change of the sign indicates a collision and negative distance magnitude is equal to penetration
δ. Several algorithms for minimum distance calculation were published [1,3,11,14]. This study
is focused on the analytical approach of minimum distance problem [2]. Idea of this method
is to create a new plain, parallel to an initial one and tangential to the ellipsoid. When the
common point, marked as C, of a new plain and of an ellipsoid is detected, distance between
this point and the plain can be calculated, using adequate equation from analytical geometry.
There always exist two such parallel plains, as is shown in Fig. 3.

2.5. Minimum distance problem application

Let us show analytical solution of the contact problem between an ellipsoid and a plain. The
standard equation of an ellipsoid centred at the origin of a Cartesian coordinate system and
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Fig. 3. Ellipsoid and two parallel plains

aligned with the axes is
x2

a2
+

y2

b2
+

z2

c2
= 1, (13)

where a, b and c are constants, which represent the length of semi-principal axes. Equation (13)
can be rearranged by set of substitutions to the form

Ax2 +By2 + Cz2 +D = 0. (14)

A general equation of plain can be defined as

kx+ ly +mz + n = 0. (15)

An ellipsoid is a type of a quadric surface in coordinates {x, y, z}. Thus equation (15) can be
rearranged to be a function z = z(x, y) as

z(x, y) = − k

m
x− l

m
y − n

m
. (16)

A plain can be defined using one point and two vectors. To ensure new plain being parallel
with the initial one, at least two gradient vectors of both plains have to be the same. The two
gradient vectors together with one point on the surface of the ellipsoid, can identify the required
tangential plain. Hence the gradients ∂z

∂x
and ∂z

∂y
of the plain z = z(x, y) are evaluated as

∂z(x, y)

∂x
= − k

m
(17)

and
∂z(x, y)

∂y
= − l

m
. (18)

Equation (14) is differentiated with respect to variables x and y as

∂

∂x
: 2Ax+ 2By

∂y

∂x︸︷︷︸
0

+ 2Cz
∂z

∂x︸︷︷︸
− k

m

= 0 (19)

and
∂

∂y
: 2Ax

∂x

∂y︸︷︷︸
0

+ 2By + 2Cz
∂z

∂y︸︷︷︸
− l

m

= 0. (20)
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Since x and y are independent variables, mixed derivatives are equal to zero. If equation (17)
and equation (18) are substituted into equation (19) and equation (20) together with general
equation of ellipsoid (14) generate the system of three equations for unknown variables x, y
and z as

2Ax− 2Cz
k

m
= 0, (21)

2By − 2Cz
l

m
= 0 (22)

and
f(x, y, z) = Ax2 +By2 + Cz2 +D = 0. (23)

Solution of this system of equations generates two points, namely point C1 = [x10, y10, z10] and
point C2 = [x20, y20, z20], which are mutual points of the body and the new tangential plain.
These points are also the points of extrema distance (minimum and maximum) between plain
and body, see Fig. 3. When coordinates of these points are known, it is very straightforward to
calculate distance between these points and plain. The distance between point X0 = [x0, y0, z0]
and plain kx+ ly +mz + n = 0 is given by

d =
kx0 + ly0 +mz0 + n√

k2 + l2 +m2
. (24)

Equation (24) results two extrema distances between the ellipsoid and the plain, so minimum
one is required. However, this method is working only for the ellipsoid, whose semi principal
axes are parallel with coordinate axes. Both of the entities (the body and the plain) have to be
expressed in the identical coordinate system to applied the method defined above. Here, the
equation of the plain in form (15) is expressed in the global, frame-fixed, coordinate system,
but equation of ellipsoid (13) is evaluated in the local body fixed coordinate system.

2.5.1. Transformation

Actual position of any point of ellipsoid is defined by 6 independent coordinates xs, ys, zs, ψ,
ϑ, ϕ, where xs, ys and zs are coordinates of centre of gravity and ψ, ϑ and ϕ are Euler’s angles.
The principle applied here is based on the transformation of a plain equation from a global
coordinate system, marked as x1 into a local body fixed coordinate system, marked as x2. For
the transformation, it is useful to write the plain and the ellipsoid equations in a matrix form
using homogeneous coordinates. Thus the plain equation is

[
k l m n

]
⎡
⎢⎢⎣

x1

y1
z1
1

⎤
⎥⎥⎦ = 0, (25)

or in compact matrix form
rTx1 = 0. (26)

The ellipsoid equation comes to

[
x2 y2 z2 1

]
⎡
⎢⎢⎣

A 0 0 0
0 B 0 0
0 0 C 0
0 0 0 D

⎤
⎥⎥⎦
⎡
⎢⎢⎣

x2

y2
z2
1

⎤
⎥⎥⎦ = 0, (27)
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or in matrix form

(x2)
TAx2 = 0. (28)

As is mentioned above, both the entities need to be expressed in the same coordinate system.
The very crucial question is how to transform those equations to be expressed in the same
coordinate system. A purpose of the transformation is to obtain equations in such a form, which
the method of minimum distance calculation can be applied on. There are two possibilities how
to assure this condition:

• The first option is using matrix T to transform ellipsoid equation (28) from the local
coordinate system to the global one (where the plain is defined) as

xT
1T

TATx1 = 0. (29)

• The second one is to use matrix T−1 to transform plain equation (26) from the global
coordinate system to the local one (where the ellipsoid is defined) as

rT−1x2 = 0, (30)

in which T is a transformation matrix between the local and the global coordinate system
and obviously T −1 is a transformation matrix from the global to the local coordinate
system.

• The first option results a scalar equation, but it is highly non-linear and it is not possible
to arrange that in a form

Ãx2
1 + B̃y21 + C̃z21 + D̃ = 0, (31)

where Ã, B̃, C̃ and D̃ can be any arbitrary constants. So, this option is not suitable for
this purpose.

• The second option also results a scalar equation, but this can be written in the same form
as the original one as

k̃x2 + l̃y2 + m̃z2 + ñ = 0, (32)

where k̃, l̃, m̃, ñ are constants defined by particular transformations.

Now both (the plain and the ellipsoid) equations are expressed in the same coordinate system
(local body-fixed) and the standard distance calculation method described above can be used.

Equation of a transformed plain equation (32) together with original equation of ellip-
soid (14) are satisfactory inputs to the minimum distance calculation method. By solving system
of equations, two points of extreme distance C1 and C2 are evaluated and two extreme distances
can be calculated and obviously minimum one is required

d = min
i
(di) =

k̃xi0 + l̃yi0 + m̃zi0 + ñ√
k̃2 + l̃2 + m̃2

, i ∈ {1, 2}. (33)
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2.6. Contact force

This study is focused on a continuous models implementation, in which impact force is defined
to be a function of local penetration δ and local penetration velocity δ̇, respectively. Relative
normal contact force acts at the contact point and can be defined as

fn = fn(δ, δ̇). (34)

Normal vector of the ellipsoid expressed at point C is then

cñ =

[
∂f(x, y, z)

∂x

∣∣∣∣
C

,
∂f(x, y, z)

∂y

∣∣∣∣
C

,
∂f(x, y, z)

∂z

∣∣∣∣
C

]T
, (35)

where f is the smooth regular surface, defined by (23). For the purpose of defining contact
force, normal vector is normalized to have a unit length

cn =
cñ

‖c ñ ‖ . (36)

Calculation of the relative normal contact velocity (penetration velocity) is done by differ-
entiating equation (24)

δ̇ =
d

dt
δ =

d

dt

{
kx0 + ly0 +mz0 + n√

k2 + l2 +m2

}
. (37)

Vector of contact force fn can be evaluated using entities above, regarding adequate contact
force models:

• Hertz model
fn = fn

cn = kh δ
n cn. (38)

• Spring dashpot model
fn = fn

cn = (ksd δ + bsd δ̇)
cn. (39)

• Non-linear damping model

fn = fn
cn = (knl δ

n + bnl δ
pδ̇q)cn. (40)

Parameters k, b, p, q, n are constants and it is common to set them p = n and q = 1. Param-
eter k represents artificial spring stiffness and b is artificial damping coefficient. Constants k
and b depend on various aspects, such as material and geometric properties of contacting bod-
ies. Acting force fn is then translated to the centre of gravity of the body including a torque
m caused by the translation. Fig. 4 shows two equivalent systems, first one with contact force
acting at the contact point and second system loaded with moment and force acting at the centre
of gravity.

Moment is then defined as
m = r × fn, (41)

where vector r can be expressed using coordinates of a contact point.
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(a) Original position of contact force (b) Translated force and a moment

Fig. 4. Two equivalent systems

2.6.1. Force implementation

In case of contacting bodies right hand side of equation of motion (10) includes contact force
fn and torque m and comes to a following form

f =

⎡
⎢⎢⎢⎢⎢⎢⎣

Fnx

Fny

Fnz −mg
Mx

My

Mz

⎤
⎥⎥⎥⎥⎥⎥⎦
. (42)

For separated bodies, fn = 0 and thus vector f comes to a simple form of unconstrained model
loaded only with gravity

f =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0

−mg
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦
. (43)

2.7. Contact parameters optimization

Continuous model defines contact force to be a function of penetration δ between contacting
bodies and penetration velocity δ̇ and parameters k and b, respectively. Experimental results
of simple impact example are used in comparison with numerical simulations to obtain appro-
priate values of parameters k and b for each model. By varying the theoretical quantities, the
most corresponding results of simulation to an original experiment can be achieved. Stiffness
and damping parameters are so called optimization parameters and difference between exper-
imental and calculated results is an objective function, which is desirable to be minimised.
Th method of numerical optimization is introduced here. An example of application consid-
ered here is bouncing ball, published in [5]. An elastic ball with an initial height equalling to
1.0 m, mass of 1 kg, moment of inertia equalling to 0.1 kg · m2 and radius equalling to 0.1 m,
are released from initial position under action only with acceleration of gravity g equalling to
9.81 m · s−2, see Fig. 5. The ball is falling down until it collides with a rigid ground. When
the ball collides a contact takes place and the ball rebounds, producing a jump, which height
depends on parameters of the contact force.
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Fig. 5. Bouncing ball example [5]

MATLAB software is used to solve the equation of motion of the ball and software optiS-
Lang 3.2.0, controls variation of input parameters k and b, respectively. MATLAB software
version R2011b under MS Windows platform on single processor Core Duo T2400 computer
with frequency of 1.83 GHz a 2 MB L2 cache, is used to numerically solve example of bouncing
ball. MATLAB has implemented several numerical solvers for these stiff problems. However,
it is not very straightforward to select a suitable one. In order to choose the best one for further
applications, based on minimum calculation time, four stiff numerical solvers ODE are applied
on the same system. Simulations of bouncing ball example with 1 s and 5 s duration time are
presented.

3. Results

3.1. Arm gravity motion

Following Fig. 6a shows the motion of the elbow of the right arm. While solid curve represents
3D double pendulum simulation, dash-dot curve represents 2D simulation of arm model [13]
and the points represent experimental results [13]. The second graph, see Fig. 6b, shows motion
of the wrist, where curves are same with the Fig. 6a.

(a) Trajectories of an elbow (b) Trajectories of a wrist

Fig. 6. Comparison of human arm models and experiment

Previous figures show the results of simulations in comparison with experiment. Although
the trajectory of the wrist slightly differs from the experiment and also from Valdmanova’s
simulation, the results refer to an equivalence of the systems.
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3.2. Solver selection

The most suitable numerical solver for this particular problem are chosen based on computation
time of four different stiff solvers. These are applied on the same system, namely the bouncing
ball example. Simulation of 1 s and 5 s duration time are tested and computation times are
compared.

Table 1 shows the computation times of particular simulations. Based on the results, solver
ODE15s is used in MATLAB for the numerical integration in the further calculations.

Table 1. Calculation time of identical simulation with different solvers

Computation time [s]
Solver 1 s simulation 5 s simulation

ODE23t 169 1 820
ODE23tb 278 2 675
ODE15s 166 1 382
ODE23s 1 592 20 045

3.3. Numerical optimization of contact parameters

Solver ODE15s implemented in MATLAB software is used to solve the equation of motion
of a bouncing ball. Software optiSLang controls variation of contact parameters k and b, re-
spectively, to reach the most corresponding results of simulation to an original experiment.
Mathematics optimization principle is applied on the three contact force models. Namely Hertz
model, spring-dashpot model and non-linear damping model, respectively. Calculated position
of ball centre of gravity together with the initial experiment are shown in following Fig. 7.

(a) Hertz model (b) Spring-dashpot model (c) Non-linear damping model

Fig. 7. Numerical optimizations results applied on bouncing ball example

Evaluated contact force parameters are displayed in Table 2.

Table 2. Contact parameters of particular force models

Model / Parameter k b
Hertz’s 10 000 –

Spring-dashpot 3.303e+7 2.157e+4
Non-linear damping 3.009e+7 3.000e+4
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3.3.1. Discussion

The Hertz model performs an elementary model suitable for the first approximation of impact.
Since it does not take energy dissipation phenomena into account, it is not applicable for all
configurations. In case of a fully elastic impact this model can provide satisfactory results. The
spring-dashpot model takes energy dissipation effect into account, through damping coefficient
that includes a coefficient of restitution. It refers to a more realistic situation, since it is not
limited with an elastic impact. By varying with the coefficient of restitution between 0 and 1,
phenomena between a fully plastic and a fully elastic impact can be captured. The non-linear
damping force model also works with dissipation of energy, but the calculation states unstable.
Compared to the spring-dashpot model, the curves of an experiment and a numerical simulation
differ significantly. Based on the calculations, the spring-dashpot model provides results the
most corresponding with the experiment. Due to this fact, it is used in further applications.

3.4. Double pendulum contacting a plain

The double pendulum system was described and validated to be a suitable approximation of a
human arm. Purpose of this part is to evaluate results of the system including a contact with a
plain. This can be applied in further applications such as the approximation of an arm or a leg
undergoing into an impact with an infrastructure. Motion of the double pendulum that getting
into a contact with plain is displayed in Fig. 8.

(a) t = 0 s (b) t = 0.25 s (c) t = 0.5 s

(d) t = 0.75 s (e) t = 1 s (f) t = 1.25 s

Fig. 8. Position of the double pendulum contacting a plain

4. Conclusion

Contact or impact scenario in virtual human body modelling plays significant role in biome-
chanics research. Various approaches in biomechanical modelling are currently developed The
purpose of this work is to evaluate and test the algorithm for the double pendulum getting into
a contact with a plain. The equations of motion of the double pendulum were derived using
the Lagrange equation of second kind with multipliers. Evaluating of contact force parame-
ters is performed using numerical optimization principle applied on bouncing ball example.
Three contact force models are investigated, namely the Hertz model, the spring-dashpot model
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and the non-linear damping model. Optimized contact force parameters are used in the dou-
ble pendulum impact scenario. Assuming a reference of biomechanics researches, the double
pendulum system might approximate various segments of a human body. Application of a hu-
man arm problem was verified here. Impact scenario is demonstrated on the double pendulum
getting into a contact with plain.
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[13] Valdmanová, L., Multibody model of upper extremity in 2D, Master thesis, University of West

Bohemia, Pilsen, 2009. (in Czech)
[14] Wang, W., Choi, Y. K., Chan, B., Kim, M. S., Wang, J., Efficient collision detection for moving

ellipsoids using separating planes. Computing 72 (2004) 235–246.
[15] Zhou, Q., Quade, M., Du, H., Concept design of a 4-DOF pedestrians legform. ESV Technical

paper 07-0196, 2007.

128


