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Abstract

A good spatial discretization is of prime interest in the accuracy of the finite element method. This paper presents
a new refinement criterion dedicated to an h-type refinement method called Conforming Hierarchical Adaptive
Refinement MethodS (CHARMS) and applied to solid mechanics. This method produces conformally refined
meshes and deals with refinement from a basis function point of view. The proposed refinement criterion allow
adaptive refinement where the mesh is still too coarse and where a strain or a stress field has a large value or a
large gradient. The sensitivity of the criterion to the value or to the gradient can be adjusted. The method and the
criteria are validated through 2-D test cases. One limitation of the h-adaptive refinement method is highlighted: the
discretization of boundary curves.
c© 2020 University of West Bohemia. All rights reserved.
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1. Introduction

Higher accuracy in Finite Element Method (FEM) can be obtained by adjusting spatial resolution
of domain discretization. A solution is to perform a uniform mesh refinement until finest
singularities are captured. This approach can lead to a cumbersome calculation if the studied
structure exhibits large dimensions compared to the size of some local heterogeneity that drives
the overall toughness, e.g., a crack across the thickness of a thin rod or a plate. An alternative
is to perform local adaptive refinement. For applications we have in mind, we are looking to
divide by about 10 the CPU time with a local adaptive refinement compared to a uniform mesh
refinement at same finite element accuracy. Four main refinement methods can be listed:

• the r-adaptive method consists in moving nodes of an initial mesh in the region of
interest [12],

• the s-adaptive method, where the initial mesh is overlaid with finer local meshes [11],

• the p-adaptive method consists in increasing basis function degree where it is needed
[4, 24],

• the h-adaptive method, where elements are split in some regions to decrease their size
and locally increase the mesh density [4].
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The major disadvantage of the p-method is its difficult use in case of geometrical singularities.
Splitting elements with an h-type method generally leads to non-conformities. These methods
have been also combined to increase their efficiency: hp-method [2, 4] or hr-method [14, 15]
among others. A convenient mesh refinement method has both to keep good element shape
quality in order to avoid inaccurate numerical predictions due to elongated/flat/degenerated
elements and to lead to conformal refined meshes as required by FEM. Several methods have
been developed to overcome this issue of non-conforming h- and s-methods. For example, to
restore continuity of finite element space, hanging (constrained) nodes, which are equipped with
the Degrees Of Freedom (DOFs) expressed with DOFs of the active nodes, are added in suitable
region. Another way is to use Lagrangian multipliers or penalty methods. An alternative is also
to split extra elements in order to conveniently connect refined zone to the coarse one. A method
based on this idea has been developed and extended to hexahedron in [19] to keep the number
of degrees of freedom constant (r-method).

In this paper, an h-type refinement method called Conforming Hierarchical Adaptive Refi-
nement MethodS (CHARMS) is studied. This method, initially developed in the framework of
fluid mechanics [6,16] and more recently applied to solid mechanics [10,13], allows both (i) to
preserve element shape quality while producing a conforming mesh and (ii) to perform local
adaptive refinement and unrefinement. This method deals with refinement from a basis function
point of view and not from a geometrical point of view. The general idea is to construct a hierar-
chy of nested meshes, where at a given level of refinement each basis functions can be expressed
as a linear combination of basis functions associated to the immediate finer or coarser mesh.
This refinement method is here used with new refinement criterion and is validated through
2-D test cases. Notice that CHARMS method is also valid in three dimensions and preserves
conformal finite elements at all stages of refinement even with non-conformal geometric nodes
present.

In Section 2, notations, local adaptive refinement procedure and refinement pattern are
introduced. Although unrefinement can be easily performed, only mesh refinement is explained
and validated in this study. A new refinement criterion is proposed in Section 3. Contrary
to usual refinement criteria based on error estimations, this criterion is based on a coupling
between intensity of a mechanical field, its gradient and local characteristic size of the mesh.
Validation of the method applied to FEM in solid mechanics is exposed through 2-D test cases
and compared to fine uniform meshes. In the last section, a limitation of the method is pointed
out: the discretization of boundary curves.

2. Conforming, Hierarchical, Adaptive Refinement MethodS

CHARMS is here applied to conforming Lagrangian elements and based on the refinement/un-
refinement of basis functions. This approach relies on the nested relation between approxi-
mation spaces X0 ⊂ . . . ⊂ XJ , J ≥ 1, generated by a set of basis functions Bj , j ∈ [[0, J ]],
where the coarsest space is X0 and the finer spaces have increasing indexes up to XJ . In
this setting, adding/removing basis functions in Bj allows both to refine/unrefine the appro-
ximation space Xj and to ensure a linear independency between the set of basis functions
in Bj [6, 13, 16, 17].

Given that Xj ⊂ Xj+1, all basis functions in Bj can be expressed as linear combination of
basis functions in Bj+1. These linear combinations define children-parents relationships between
two consecutive refinement levels. To unrefine a child basis function (level j + 1), this function
is replaced by a linear combination of parents basis functions (level j).
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In order to perform refinement using CHARMS, a refinement pattern satisfying compatibility
requirements has to be defined to generate conformal meshes from a finite element point of view.
This pattern must be constituted of the same type of elements than the coarse one. The edges of
element have thus to be split in several equal edges, here in two equal edges:

• P1-triangular elements are split in 4 identical triangles, Fig. A.1,

• Q1-quadrangle elements are split in 4 identical quadrangles, Fig. B.1,

• Q1-hexahedron elements are split in 8 identical hexahedra, Fig. C.1,

• P1-tetrahedron elements are based on the strategy given in [10] which ensure that the
shape quality of refined tetrahedra does not degenerate.

The key element of the CHARMS method is the refinement equation that links the coarse
basis functions to the refined basis functions. This equation depends on the refinement pattern. It
can be generalized and written as follows for a basis function ϕ̂i related to a reference element K̂:

∀i ∈ [[0, N̂ − 1]], ϕ̂
(0)
i =

bN(1)−1∑
k=0

β̂ikϕ̂
(1)
k with β̂ik = ϕ̂

(0)
i (â

(1)
k ), (1)

where superscripts (0) and (1) denote the reference element and the refinement pattern respecti-
vely, N̂ is the number of nodes, ϕ̂• are the basis functions and â

(l)
k is the node linked to the basis

function ϕ̂
(l)
k .

Refinement algorithm

Let B∗ = {ϕ(j)k , where j ∈ [[0, J ]]} be a multi-level basis. A refining step of B∗ consists in
creating a new multi-level basis B by replacing basis function ϕ

(j)
k by all children basis functions

ϕ
(j+1)
l . In Fig. 1 the red and blue zones correspond to an area approximated respectively by

B∗ and B. At the first step of refinement, in the case of the refinement of the square reference
element depicted in Fig. B.1 the relations between basis function ϕ
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For the initial step, the basis functions are thus given by B = {ϕ(0)k , k ∈ {1, 2, 3, 4}} and after
the first refinement step there are given by B∗ = {ϕ(1)k , k ∈ {1, 2, 3, 4, 5, 6, 7, 8}}.
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Fig. 1. Initial mesh. The red zone represents the area approximated by the basis functions B∗ (left).
Refined mesh. The blue zone represents the area approximated by the basis functions B (right)

3. Refinement criteria

In order to perform local adaptive refinement, refinement criteria have to be implemented in
order to select basis functions that need to be refined. Classically refinement criteria used in the
literature are based on error estimation [3, 5, 18, 26, 27]. In the case of error-based adaptivity,
two approaches are possible: (i) one uses two meshes [5, 9, 17] for error estimation; (ii) error is
obtained via solution of a global problem [17, 18] or some local problems in elements [1, 24].
Additionally, the error-controlled adaptivity can be driven either by the interpolation error [7–9]
or by the approximation, modeling and total errors [1, 21, 24, 25]. The estimators can either
be recovery [16, 18] or residual ones [1, 21, 24, 25]. The former estimators were developed by
Zienkiewicz [26]. In this case, the basic idea is to build a new stress field σ∗ from the stress
field σh obtained with the FEM, in interpolating σ∗ either by the same basis function used in the
FEM [26] or by a polynomial in the so-called ’super-convergent points’ in element patches of
the domain [27]. Then, an error estimator |σ∗

q − σh
q | is calculated for each element q. Whereas

the second construction of σ∗ is more time consuming, it shows better results [27] and does not
underestimate the error. The interpolation error control is usually associated with the iterative
adaptation, while the approximation error control may lead to adaptation with fixed number of
steps (three- or four-step for hp-approximation, for example) [20, 21, 25]. The latter approach
needs availability of the convergence theory in order to relate the discretization parameters to
the error level. The estimators can either be recovery [17, 18] or residual ones [1, 21, 24, 25].
There also exists another approach which is called the goal-oriented adaptivity [22], where the
error estimation for the quantity of interest [1, 23] can be performed on the chosen part of the
mesh.

All the above-mentioned criteria need additional calculations. In order to avoid these addi-
tional numerical costs, a new criterion, which belong to the iterative adaptation approach, have
been developed. It is based both on the intensity of an ad hoc field F and on its gradient taking
also into account the refinement level. The general form of the criterion reads

∀i ∈ [[1, Ndof ]], Ccrit > C =

(∣∣∣∣ Fi

Fmax

∣∣∣∣
)α (

||∇Fi||2
||∇F ||max2

)1−α (
1
n

)r

, (3)

where Ccrit ∈ [0, 1] is a threshold (Ccrit = 0 means that all basis functions are refined), Fi and
∇Fi represent the value of a field F and of its gradient respectively for a given node i, Fmax and
∇Fmax represent the largest value of F and of its gradient respectively over the structure. Ndof
is the number of degrees of freedom, || · ||2 represents the L2-norm and the power r stands for
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the refinement level. For applications we have in mind, the term |Fi/F
max| allows to refine areas

submitted to high stress or strain where crack can be initiated, while the term ||∇Fi||2/||∇F ||max2
allows to refine areas where stress or strain fields evolve rapidly in space, i.e. around a crack
tip where already existing crack can propagate. The term (1/n)r allows to take into account the
mesh size by favoring refinement on non refined elements where n is the subdivision number of
an edge, namely 2 in our study. The power α ∈ [0, 1] allows to weight the influence of the field
intensity or its gradient. The studied mechanical problem induces the choice of the field F and
the power α. In this work, we focus on the von Mises stress field F = σV M and the von Mises
strain field F = εV M :

σV M = 1
2

√
(σI − σII)2 + (σI − σIII)2 + (σII − σIII)2,

εV M = 1
2

√
(εI − εII)2 + (εI − εIII)2 + (εII − εIII)2,

(4)

where σi and εi with i ∈ {I, II, III} are principal stress and principal strains, respectively.

3.1. Role of power α

Although in the parametric studies presented, the mechanical behavior considered is independent
of time, a fictitious time step is introduced in all numerical studies. This fictitious time step allows
an arbitrary evolution of the value of the threshold Ccrit while the applied load remains constant.
By this way, successive refinements can be observed and convergence analysis can be performed.

The first test case deals with a square hole in a square plate, Fig. 2. The material properties
and numerical parameters are shown in Tables 1 and 2. A constant vertical displacement is

L = 150 l = 50

Fig. 2. Geometry of the square plate with a square hole, dimensions in mm. The blue rectangle corresponds
to zooms showed in Fig. 3

Table 1. Square plate with square hole: mate-
rial properties

Young modulus E = 300MPa

Poisson’s ratio ν = 0.4

Table 2. Square plate with square hole: numerical para-
meters

Increment step Δt = 1 s

Total number of increment 51

Element pattern square

Mesh size href = 0.416mm
hcoarse = 4href
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Refined meshes for Ccrit = 0.75 and (a) α = 0, (b) α = 0.2, (c) α = 0.4, (d) α = 0.6, (e) α = 0.8,
(f) α = 1. The color code stands for the von Mises stress

applied on the top of the specimen while the bottom remains fixed along the vertical direction.
Two refinement steps are applied and six values of α are considered. The field of interest F is
the von Mises stress field σV M . This parametric study allows to estimate the role of the power α.
Fig. 3 shows the refinements obtained for different values of α. These refinements are observed
in an area of interest depicted by a blue rectangle in Fig. 2 and located in the vicinity of the corner
of the square hole. As expected, when α is close to one, the refinement criterion (3) gives more
weight to the intensity of the von Mises stress field than to its gradient and the mesh is refined
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where large stress values are observed, i.e. within the ligament of the structural problem with
respect to the load direction. In Fig. 3(f) mesh is refined everywhere but above the square hole
where the stresses are screened. On the contrary, when α is close to zero the refinement criterion
only concerns the gradient of the von Mises stress field and the refinement takes place where
some stress concentration occurs, here at the corner of the square hole, Fig. 3(a). Extrapolating
this situation to crack problems, the role of the power α could be summarized as follows: when
α is close to zero, the criterion (3) induces refinement where new cracks can occur, when α is
close to one, the mesh is refined at the crack tip of existing cracks.

3.2. CHARMS refinement vs homogeneous refinement

At a given number of elements, a mesh refined in convenient zones can give more precise results
than a homogeneous mesh. To quantify this enhancement induced by the refinement criterion
(3), a normalized error on the overall strain energy is calculated at each node of a mesh

e =
|Erefi − Eref |

Eref
, (5)

where Erefi and Eref are the global strain energy on a refined mesh and on a reference mesh
respectively. The studied case is the square plate with a square hole above detailed. The reference
mesh is a homogeneous fine mesh of the structure with about 120 000 quadrangles whose mesh
size href is given in Table 2.

As previously mentioned, the adaptive mesh refinement is obtained by deceasing the value
of the threshold Ccrit (by step of 0.02) whilst the load remains constant.

Fig. 4 shows the evolution of this energy error (5) with respect to the number of elements
for different values of α. The thick black curve shows the energy errors for homogeneous
refinement while the colored curves correspond to CHARMS refinement. Both the CHARMS

Fig. 4. Square plate with square hole: evolution of the global energy error with respect to the total number
of elements, comparison between the CHARMS refinement and the homogeneous refinement for different
values of α. Stages of refinement are illustrated in Fig. 5
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Fig. 5. Sketch of various meshes involved from stage 1 (left) to stage 5 (right) in Fig. 4. CHARMS
refinements (top row), homogeneous refinements (bottom row). Stages 1 and 5 correspond to the same
state

refinement and the homogeneous refinement start from the same coarse mesh with about 7 000
elements (stage 1 in Figs. 4 and 5) and finish at the same fine mesh with about 120 000 elements
(stage 5 in Figs. 4 and 5). At these stages 1 and 5, the energy error e is, thus, the same for the
CHARMS approach and the homogeneous one, with a larger error at stage 1 since it corresponds
to the coarser mesh. During stages from 2 to 4, the meshes for the CHARMS refinement do
not correspond to the meshes of the homogeneous refinement: the refinement takes place where
the criterion (3) is reached. At the first, second and third refinements (stages 2, 3 and 4) the
enhancement proposed by the CHARMS approach is significant and the energy error is about
two times smaller than for the homogeneous refinement. However, no theoretical estimate of this
energy error has been carried out and the estimates in Fig. 4 is pragmatic. In this example, only
two CHARMS refinement steps are allowed. Then, when the mesh size is 4 times smaller than
in the initial coarse mesh, the refinement process takes place somewhere else and the interest of
the CHARMS refinement disappears.

Moreover, we can notice in Fig. 4 that the energy error decreases with α. In this example,
the high local stress concentration due to the square shape of the hole induces a predominant
role of the gradient field in the criteria (α < 0.5).

Two main conclusions can be drawn on this example: (i) since successive refinements are
allowed, the proposed method can significantly reduce the finite element error (here in an energy
sense) compared to homogeneous refinements; (ii) the power α has to be adapted to each problem
and in practical calculations, when the parametric studies on α are not available, the value of α
can be set to the mid value 0.5.

3.3. Role of the field F

This test case deals with bimaterial square plate (Fig. 6) constituted with stiff inclusions in softer
matrix. Material properties and numerical parameters are shown in Tables 3 and 4. A constant
vertical displacement is applied on the top of the specimen while the bottom remains fixed along
the vertical direction. In this study again two refinement steps are applied, the power α is fixed
to 0.4 and two fields of interest F are tested namely the von Mises stress Fig. 7(a) and the von
Mises strain Fig. 7(b). As previously, the normalized error e (5) is calculated at each node of the
refined mesh to evaluate the accuracy of the method. Again, the value of the threshold Ccrit is
also reduced by 0.02 at each fictitious time step.
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L = 100

d1 = 10

d2 = 15

Fig. 6. Geometry of the bimaterial plate subjected to tensile loading, dimensions are in mm. The inclusions
are in grey and the areas of interest where relative energy errors are calculated are in blue

Table 3. Bimaterial: mechanical properties

Matrix Inclusions

Young modulus E = 1.5GPa E = 15GPa

Poisson’s ratio ν = 0.2 ν = 0.4

Table 4. Bimaterial: numerical properties

Increment step Δt = 1 s

Total number of increment 51

Element pattern triangle

Mesh size href = 0.5mm
hcoarse = 4href

Fig. 7 shows that the obtained refined mesh clearly depends on the choice of the field
of interest used in the criterion (3). When the field of interest is set to the von Mises strain,
the refinement is located around the inclusion where maximum equivalent strain is reached.
When von Mises strain is used, the refinement is located inside the inclusions where maximum

Fig. 7. Refined meshes for: Criteria using von Mises stress as F . The color code stands for the von Mises
stress (left). Criteria using von Mises strain as F . The color code stands for the von Mises strain (right)
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Fig. 8. Bimaterial: evolution of the global energy errors for the refined mesh for von Mises stress and von
Mises Strain criteria and homogeneous meshes depending on the total number of elements

equivalent stress is reached. This ability of the criterion to induce the refinement zone of the
mesh in relation to the quantity of interest chosen is very useful according to the studies to
be carried out. For example, if we are interested in the fragmentation of inclusions or their
decohesion, the choice of the quantity of interest is decisive. Fig. 8 shows the evolutions of
energy normalized errors for the two criteria. For the two cases, the error rapidly decreases with
respect to the number of elements and since the calculations are performed in linear elasticity
the field of interest (stress or strain) has no influence on the FEM quality of the refined meshes.

4. Limitation: discretization of curved edge

In this section, a limitation of the CHARMS method is pointed out. Indeed, this method is
based on the refinement of the basis functions (h-method) and not on remeshing. Geometric
approximation of boundary curves are thus not improved during the refinement steps. We will
highlight this limitation on the classical test case of an infinitely long cylinder loaded with an
internal imposed displacement, with internal radius a and external radius b. The closed-form
solution of this problem reads

∀r ∈ [a, b], ur(r) = Ar +
B

r
with A =

u0
a(1− ξ)

, B =
aξu0
ξ − 1 , ξ =

(
b

a

)2
, (6)

where the imposed internal displacement is ur(a) = u0 	= 0 and the external displacement
ur(b) = 0. For this test case, a and b have been chosen so that ξ = 2.

The field F is the von Mises stress and the power α = 1 because there is no stress concen-
tration in this example. The refinement pattern used is the P1-triangle element (Appendix A)
and the maximum refinement level is 2. For the simulation, we consider a quarter of disc in
plane strain assumption (Fig. 9). The material and numerical properties are presented in Tables 5
and 6. The value of the threshold Ccrit is decreased by 0.1 at each time step so that at final time
all basis functions are refined.

Knowing the closed-form solution, an exact relative error is calculated at the red dot exhibited
in Fig. 9:

ẽ =
|usimr − uexactr |

|uexactr | , (7)
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•

a

b

Fig. 9. Geometry of the internal displacement imposed cylinder: a = 100mm is the internal radius and
b = 200mm is the external radius. The red point is the point of interest

Table 5. Hollow cylinder: material parame-
ters

Young modulus E = 300MPa

Poisson’s ratio ν = 0.4

Table 6. Hollow cylinder: numerical parameters

Increment step Δt = 1 s

Total number of increments 10

Element pattern triangle

Mesh size href = 0.625mm
hcoarse = 4href

where usimr is the displacement calculated at the red dot with adaptive mesh refinement and uexactr

is the analytical displacement obtained with (6).
In this particular case of an initial coarse mesh of a curved boundary, the curves in Fig. 10

exhibits that the error is more important for a refined mesh using CHARMS method than for
a mesh geometrically refined. Effectively, unlike what is classically exhibited using geometric

Fig. 10. Hollow cylinder: evolution of the exact relative error (7) calculated at the red node obtained
with mesh refinement (blue curve) and with homogeneous meshes (black thick curve) with respect to the
number of elements
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•

•

•

ed •

•

•

Fig. 11. Mesh obtained with the spatial discretization of a curved geometry. The real curvature is in black
dots, the discretization obtained with CHARMS is in blue dots (the coarse mesh is the black square)
and the discretization using a homogeneous mesh is in green dots. ed represents the spatial discretization
error between the homogeneous mesh and the refined mesh

mesh refinement and previous results (Figs. 4 and 8), we do not observe a monotonous decrease
in error during successive refinement steps using the CHARMS method.

Fig. 11 illustrates the fact that geometric remeshing naturally induces a better edge interpo-
lation. In fact using the CHARMS method coarser the initial mesh is, higher the geometrical error
is while refining. The refinement method CHARMS cannot increase geometrical interpolation
of an initial coarse mesh. Just as it is done in fluid mechanics for meshes to capture boundary
layer behavior, it is important in solid mechanics for structures with large radii of curvature to
use an initial mesh with good geometry interpolation before making refinement steps.

5. Conclusions

A local adaptive method using a basis function point of view is presented and validated in solid
mechanics with elastic behavior. This method enables to refine elements without degenerating
their shape quality and to implicitly handle the non-conformities. During a step of refinement
the current basis functions are replaced by a linear combination of these functions based on a
refinement pattern. A refinement criterion based on the value of an ad hoc field and its gradient
has been developed. Compared to classical criteria, this approach is not time-consuming since it
does not require any additional calculation but interpolated errors cannot be quantified a priori.
The presented test cases show good results and put in evidence that the choice of the field
of interest influences the region of refinement. At the end, one limitation of the h-adaptive
refinement method is pointed out. If the specimen has a severe curvature, the initial mesh has to
be fine enough because the CHARMS method, based on the interpolation of the shape functions,
does not allow an improvement of the geometrical interpolation.

In future work, CHARMS will be applied in case of crack propagation where refinement
and unrefinement can be performed adaptively.
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Appendix A P1-triangle refinement pattern

The refinement pattern of a P1-triangle and its equations are specified in Fig. A.1.
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Fig. A.1. Refinement pattern of a P1-triangle element and associated refinement equations

Appendix B Q1-quadrangle refinement pattern

The refinement pattern is detailed in Fig. B.1 and the corresponding equations are given in (2).

Fig. B.1. Square reference element (left) and associate refinement pattern with basis functions (right)
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Appendix C Q1-cuboid refinement pattern
The refinement pattern and its equations are detailed in Fig. C.1.
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Fig. C.1. Q1-cuboid refinement pattern, the refined basis functions coordinates and refinement equations
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