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Abstract

Finite-element modeling of self-sustained vocal fold oscillations during voice production has mostly considered the
air as incompressible, due to numerical complexity. This study overcomes this limitation and studies the influence of
air compressibility on phonatory pressures, flow and vocal fold vibratory characteristics. A two-dimensional finite-
element model is used, which incorporates layered vocal fold structure, vocal fold collisions, large deformations
of the vocal fold tissue, morphing the fluid mesh according to the vocal fold motion by the arbitrary Lagrangian-
Eulerian approach and vocal tract model of Czech vowel [i:] based on data from magnetic resonance images.
Unsteady viscous compressible or incompressible airflow is described by the Navier-Stokes equations. An explicit
coupling scheme with separated solvers for structure and fluid domain was used for modeling the fluid-structure-
acoustic interaction. Results of the simulations show clear differences in the glottal flow and vocal fold vibration
waveforms between the incompressible and compressible fluid flow. These results provide the evidence on the
existence of the coupling between the vocal tract acoustics and the glottal flow (Level 1 interactions), as well as
between the vocal tract acoustics and the vocal fold vibrations (Level 2 interactions).
c© 2021 University of West Bohemia.
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1. Introduction

Understanding the physiology and biomechanics of human voice production is the basis of voice
and speech sciences. Voice is produced through self-sustained oscillations of the vocal folds
(VFs) which are excited by air flowing from the lungs. The VF oscillations modulate the airflow
and cause acoustic pressure oscillations; these propagate with the speed of sound through the
cavities of the vocal tract (VT). The VT acts as a resonator with multiple resonance frequencies;
those alter the primary sound generated at the VF level and provide the sound with the typical
properties recognized as a human voice.

The voice production mechanisms should, in principle, involve the forward and backward
fluid-structure-acoustic interaction (FSAI). Although the current mathematical models, which
can handle such complex interaction, are mostly based on partial differential equations (PDEs),
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an extensive work has been done on the lumped-mass models mainly because of their under-
standability and low demands on hardware.

Based on the first groundbreaking models [26, 33, 57], the recent lumped-mass models are
capable of capturing linear or non-linear interactions between the physical domains [75, 77],
chaotic behavior of the VFs in some regimes [78,79], bulged shape of the VFs [31,47] or sound
of the vowel [i:] [33, 46].

The PDE-based models are still using many simplifications because of their computational
costs. The typical simplification is to solve interactions between two of physical domains,
e.g., the fluid-structure interactions (FSIs). The FSIs have been commonly solved in many
engineering applications [6, 8, 55]. In the field of voice research, the early PDE-based model
that introduced the one-way FSI was that of Alipour et al. [3].

The FSI models were gradually developed to include VF self-oscillations [1, 2, 69], which
turned out to correspond well with previous theoretical studies [70, 71] and found that cyclic
changes of the VF profile from convergent to divergent shape play a crucial role in the fluid-
structure energy exchange allowing sustained VF self-oscillations.

Later models added the VF collisions [19, 68]. Periodical flow separation during the VF
oscillation allowed to observe flow behavior in glottis during oscillatory cycle. The largest
pressure drop occurred between divergent shape of the VF. This phenomenon is in an agreement
with the concept of the myoelastic-aerodynamic theory of phonation [14, 66, 73] and with the
recent experimental and computational results [4, 19, 27, 52, 69].

To obtain information on the sound generated due to the pulsating flow produced by the
oscillating VFs, fluid-acoustic interaction (FAI) needs to be taken into account [36]. Several
theories, i.e. acoustic analogies, have been developed to describe the airflow-generated sound.
These involve Lighthill’s analogy [41, 42], Curle’s analogy [18], Ffowcs Williams-Hawkings
(FWH) method [25] or acoustic perturbation equations (APE) [22].

Many authors created new models of phonation with a prescribed movement of the VF
and the acoustic analogy or APE. They showed that the dominant acoustic source is the sound
generated by the flow through the glottis [9,34,58,85] and the prescribed (driven kinematic) VF
movement is reasonable simplification resulting in lower computational costs [24,50,51,63,87].
Yet Alipour et al. upgraded their model [2, 4] with the self-oscillating VFs and found that the
distributions along the centerline axis in this model were similar as in [19, 27, 52, 69] and the
presented formants of the vowels [a:] and [i:] were in good correspondence to those observed in
humans. The self-oscillating model of Link et al. [43] demonstrated the possibilities of the FSAI.

The above-mentioned incompressible glottal flow models with the acoustic analogies offer
an indirect way to acquire acoustic pressure from the behavior of an incompressible flow. The
direct way requires calculation of the acoustic pressures using the compressible Navier-Stokes
equations (NSEs). Acoustic pressures are then inherent part of such a solution. This attitude is,
however, by far the most computationally expensive, especially for low Mach number flows
(below 0.3), due to a disproportion in flow and sound velocities [6, 9, 17, 43].

Overcoming these problems, Zhang et al. [84] used the compressible NSEs to calculate
airflow and sound generated through prescribed motion of the glottis and compared the results
to those from the FWH method. The results were in a good agreement.

Shickhofer et al. [53, 54] also used compressible NSEs. Although the source signal was ge-
nerated by the Rosenberg glottal pulse model [48] instead of self-oscillating VFs, they simulated
five vowels on a realistic geometry. Results showed that first formants of all simulated vowels
were in good agreement with measured formant frequencies. The measured sound signal was
obtained during magnetic resonance (MRI) scan.
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To the best of our knowledge, there has not been any study including the compressible NSEs
and complete FSAI involving the self-oscillating VFs. The model presented here is based on
previous studies of the authors [28, 29, 64, 65] where an finite-element (FE) model of the vocal
organs during phonation of Czech vowels was developed. In this study, new two-dimensional
(2D) FE models of flow-induced oscillations of the VFs, in interaction with acoustic spaces of
the VT, were constructed to enable calculations using either compressible or incompressible
airflow.

Although the 2D assumption carries several simplifications, e.g., different formation of
turbulence in the VT, absence of spatial vortices or no anterior-posterior modes of VF vibration,
it is used here for the sake of a radical reduction of computational costs [62]. It was shown that,
up to 3000 Hz, the influence of the spatial dimension of the VT is rather insignificant [80].

The aim of this study was to directly compare the effect of air compressibility on VFs
oscillations using an identical FE mesh, identical boundary conditions and identical FSI for-
mulation for compressible and incompressible airflow model. The computed quantities are
compared to data found in the literature.

The description of the computational model is divided into sections concerning the geometry
of the VF and VT, FE setup, the material model and parameters, the boundary conditions, and the
algorithm of the FSAI implementation including the mathematical formulation of the structural
and fluid domains.

2. Methods

2.1. Vocal fold and vocal tract geometry

The geometry of the VFs was based on the widely used parametric M5 shape, see Scherer
et al. [52]. To take into account the layered structure of the VFs [72], four layers of the VF tissue
were included in the model – epithelium, superficial layer of lamina propria (SLP), ligament
(intermediate and deep layers of the lamina propria) and muscle [72, 73]. The geometry of
the VT was based on data registered by the MRI during male phonation of the Czech vowel
[i:] [20, 80].

2.2. Finite element model

A 2D FE model of the VF and of the VT with trachea were developed using the software package
ANSYS R© Academic Research Mechanical, Release 15.0. The FE models of the four-layered
tissue of the VFs and of the airways in the VT for the vowel [i:] are shown in Fig. 1. This figure
shows also the details of the fluid mesh in the glottal region (marked by the red rectangle) which
contains 12 fluid elements over the glottal width. The dimensions of the models are specified in
Table 1. The FE model consists of 5 350 linear 3-node and 4-node structural elements, 10 747
linear 4-node fluid elements and 2 × 24 contact elements, which ensure a symmetric contact
pair, i.e., the VF collisions. The structural and contact elements have two degrees of freedom
(DOF) in each node (displacement in x and y directions) and fluid elements have three DOFs
for incompressible flow (velocities in x and y directions and pressure) and four DOFs for
compressible flow (velocities in x and y directions, pressure and temperature).

In comparison with [28, 64, 65], the fluid mesh was refined to capture smaller eddies in the
airflow. The size of the fluid element in the y direction between the VFs was 0.025mm typically.
This size was gradually increasing to approximately 5 mm near the lips and near the entrance
to the trachea. Taking into account the condition of 10 nodes (or 9 linear elements) per acoustic
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Fig. 1. a) The four-layered FE model of the VFs; b) details of the FE mesh in the glottal region; c) the 2D
FE model of Czech vowel [i:]. The blue points marked on the VF contact surfaces, in the trachea and
in the VT are the evaluating points, i.e., points, where the simulated time signals were observed. The
indicated spatial parameters are numerically specified in Table 1. The L coordinate shown in c) denotes
the length of the whole FE model

Table 1. Dimensions of the model

Epithelium thickness TE [mm] 0.05 Inferosuperior thickness TVF [mm] 11.00
SLP thickness TSLP [mm] 1.00 Trachea length LT [mm] 74.00
Mediolateral depth DVF [mm] 9.00 Length of VT for [i:] LVT[i:] [mm] 175.61

wavelength [7], the fluid mesh can handle frequencies up to 7 844 Hz. This limit is reasonable
since the time step value lowers the maximal frequency range to 5 000 Hz due to sampling
reasons. Majority of the acoustic energy contained in the spectrum of human voice is located
below 5 000 Hz [12, 59].

2.3. Material used for the model

Each layer of the VFs was considered to be a homogeneous isotropic linear elastic material
with properties derived from [35,73] and tuned in [28,29,64,65], see Table 2. Properties of the
dry air were set to the parameters known for the ideal gas of 36 ◦C [6], see Table 3. The speed
of sound cair [m · s−1], as a function of the equation of state and its absolute temperature, was
acquired from the well known equation

cair =
√

κRT ≈ 331.6 ·
√
1 +

t

273.1
, (1)

where κ is the heat capacity ratio given in Table 3, R is the universal gas constant with the value
of 287.05 J · kg−1 ·K−1, T is the air temperature in [K] and t is the air temperature in [◦C].
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Table 2. Material properties of the VFs

VF layer:
Young’s modulus

E [Pa]
Poisson’s ratio

μ [–]
Density

ρs [kg ·m−3]
Epithelium 25 000 0.49 1040

SLP 2 000 0.49 1040
Ligament 8 000 0.49 1040
Muscle 65 000 0.40 1040

Table 3. Material properties of air

Air:
Speed of sound
cair [m · s−1]

Dynamic viscosity
η [Pa · s]

Density
ρf [kg ·m−3]

Heat capacity ratio
κ [–]

36 ◦C 353 1.813 51 · 10−5 1.205 1.4

In order to insert the damping of the VF layers to the ANSYS R© transient analysis (see
Section 2.5), proportional (Rayleigh) damping coefficients α (mass-proportional damping) and β
(stiffness-proportional damping) were used. These two coefficients were acquired using the
modified formulas from [23]

α = 2πf1 · (bp1 − πf1β), (2)

β =
bp2 − f1

f2
bp1

π ·
(
f2 − f21

f2

) . (3)

The damping coefficients for the SLP layer required as an input a pair of chosen damping ratios
bp1 = 0.20 and bp2 = 0.30 [15, 37, 67] and a pair of natural frequencies f1 = 70.65 Hz and
f2 = 142.54 Hz of the undamped VF computed by modal analysis in the ANSYS R©. Thus, the
damping of the SLP layer resulted in α = 60.377 6 s−1 and β = 0.000 6 s.

The damping of the other layers of the VFs was set to α = 116.527 9 s−1 and β = 0.000 4 s,
which correspond to damping ratios bp1 = bp2 = 0.2 at the above mentioned natural frequencies
f1 and f2.

2.4. Boundary conditions

Boundary conditions and loading were applied in the same manner in both the FE models. The
entrance to the trachea was excited by a constant lung pressure pL = 270 Pa (over the considered
atmospheric pressure of the 101 350 Pa) as the only driving parameter. This lung pressure is at
the lower end of the physiological values observed in humans [10]. Such a low value of the pL

was chosen to avoid excessive fluid mesh distortion in the glottal region observed at higher lung
pressures.

Zero pressure was applied at the end of the VT to simulate open lips. Radiation to an open
space was not considered in this study, similarly as in other studies [19,43,60,62,83,86,87]. The
PML layer of elements used in some models [24,63] could not be applied here because the PML
layer is designated for acoustical elements rather than the elements for fluid flow simulations.

Rigid walls of the VT and trachea were set to be totally reflective with no-slip condition for
the fluid flow. The VFs were clamped at the lateral ends.
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2.5. Fluid-structure-acoustic interaction algorithm

The FE model of the FSAI was solved in a time domain using a transient analysis with the time
step of 1 ·10−4 s. The structural model (VFs) was described by a momentum equation [6,13,21]

ρs
∂2us
∂t2

−∇τs = fs, (4)

where ρs is the density of the structural model, us are the unknown displacements, τs is
the Cauchy stress tensor and fs is the structural load vector. The structural model was coded
in ANSYS R© Parametric Design Language (APDL) and included large deformations and VF
collisions. The generalized Hilber-Hughes-Taylor time integration method (HHT-α method) was
used for the time integration of the momentum equation [6]. For this purpose, the momentum
equation (4) had to be transformed to a weak formulation and discretized by the FE method,
which led to a system of equations

Mü(t) +Cu̇(t) +Ku(t) = Fs(t) , (5)

whereM, C, and K are the structural mass, damping and stiffness matrices, ü(t) is the nodal
acceleration vector, u̇(t) is the nodal velocity vector, u(t) is the nodal displacement vector and
Fs(t) is the applied load vector.

The airflow model in the trachea and the VT was developed in the ANSYS R© FLOTRANTM

code. The governing equations consist of the continuity equation, the unsteady viscous com-
pressible NSEs and the energy equation for the adiabatic process.

All of the equations except the continuity equation, which will be discussed later, could be
written in a unified form as follows [5, 11, 82]

∂

∂t
(ρfvx) +

∂

∂x
(ρfv

2
x) +

∂

∂y
(ρfvxvy) =

∂

∂x

(
η
∂vx

∂x

)
+

∂

∂y

(
η
∂vx

∂y

)
+

ρfgx −
∂p

∂x
+Rx, (6a)

∂

∂t
(ρfvy) +

∂

∂x
(ρfvxvy) +

∂

∂y
(ρfv

2
y) =

∂

∂x

(
η
∂vy

∂x

)
+

∂

∂y

(
η
∂vy

∂y

)
+

ρfgy −
∂p

∂y
+Ry, (6b)

∂

∂t
(ρfCpT ) +

∂

∂x
(ρfvxCpT ) +

∂

∂y
(ρfvyCpT ) =

∂

∂x

(
K

∂T

∂x

)
+

∂

∂y

(
K

∂T

∂y

)
+

Qv + Ek +Wv + Φ+
∂p

∂t
. (6c)

The solved variables are: vx – fluid velocity in x direction, vy – fluid velocity in y direction, T –
temperature and p – pressure. The coefficients Cp, K, Qv, gx and gy stand for the specific heat of
1 004 J · kg−1 ·K−1, the thermal conductivity of 2.699 5 · 10−2 W ·m−1 ·K−1, the volumetric
heat source and the gravity acceleration components in x and y directions, respectively. The
distributed resistances Rx and Ry represent any source term one may wish to add.
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The kinetic energy Ek, the viscous work term Wv and the viscous dissipation term Φ can be
expressed as

Ek = − ∂

∂x

{
K

Cp

∂

∂x

[
1
2

(
v2x + v2y

)]}
− ∂

∂y

{
K

Cp

∂

∂y

[
1
2

(
v2x + v2y

)]}
, (7a)

Wv = vjη

(
∂

∂xi

∂vj

∂xi
+

∂

∂xk

∂vk

∂xj

)
, (7b)

Φ = η

(
∂vi

∂xk

+
∂vk

∂xi

)
∂vi

∂xk

, (7c)

where the latter two terms are written in the Einstein summation convention.
The complete set of the governing equations, except the continuity equation, is closed by

the thermodynamic state relations

∂ρf

∂p
=
1

RT
, (8a)

T = T0 −
1
2

v2x + v2y
Cp

, (8b)

where R is the universal gas constant given in Section 2.3 and T0 is the total (stagnation)
temperature of 309 K.

The NSEs and the energy equation (6) were discretized by the Galerkin method of weighted
residuals [5] which results in solution of the system of equations

(
ATranse +AAdvecte +ADiffe

)
· αe(t) = Sα

e (t), (9)

where ATranse , AAdvecte and ADiffe are the element matrix contributions from the transient,
advective and diffusion terms, αe(t) is an element vector of the considered variables, and Sα

e (t)
is the element vector of the source terms. The Newmark method was used for time integration.
The element integrals of the transient termATranse were formed by the pure Galerkin method. The
advection termAAdvecte was handled through the streamline upwind/Petrov-Galerkin approach
(SUPG), and the diffusion termADiffe was integrated by parts over the fluid domain [5].

The flow model included the solution of pressures. From the state equations (8) and the
continuity equation

∂ρf

∂t
+

∂(ρfvx)
∂x

+
∂(ρfvy)

∂y
= 0, (10)

the pressure correction equation is derived which enables to use the segregated velocity-pressure
solution. This nonlinear solution procedure belongs to a class of semi-implicit method for
pressure linked equations (SIMPLE) handled by ANSYS R© FLOTRANTM [5,82]. The enhanced
SIMPLEN algorithm was used in the case of compressible fluid and the SIMPLEF algorithm
was used in the case of incompressible fluid [5].

The incompressible fluid assumption breaks the linkage between the continuity equation and
NSEs on one hand and the energy equation on the other hand [82]. Omitting density variations
also simplifies the continuity equation and the NSEs. The energy equation is not solved in such
a case and therefore one DOF (the temperature T ) is spared, which leads to shorter solution
times. The sufficiently high bulk modulus of 1015 Pa was used in the incompressible state
equation (8a) instead of the term RT [5].
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Each DOF (independently on the compressibility) was solved in a sequential order. Each
equation was solved with intermediate values of the surrounding DOFs. The solution of all the
equations in turn and subsequent update of the values is referred to as global iteration [5]. Only
a few global iterations are usually sufficient to achieve default convergence criteria (normalized
rate of change of each DOF over the solved domain) of the all DOFs: 1 · 10−12 for pressure and
temperature and 1 · 10−5 for velocities.

Fig. 2. The FSAI algorithm

The FSAI algorithm is schematically described in Fig. 2. Before initiation of the FSAI
computation, the VFs were located 0.2 mm from each other. Then, they were slightly adducted
and put into contact. This was realized as a static analysis (the solution of deformation) of the
structural model. The VFs were pushed together by a prescribed displacement 0.3 mm at both
lateral ends.

Afterwards, the FSAI were solved using explicit coupling scheme with separated solvers
for the structural and fluid model in the global iterations [5]. The results of the airflow solution
were transferred as loads on the VF surface. This then allowed computing the VF motion. In the
last part of the algorithm, the material of the fluid mesh was changed to a very compliant solid
material which allowed morphing of the fluid mesh geometry based on the VFs displacement. The
arbitrary Lagrangian–Eulerian (ALE) approach was utilized to represent moving boundaries of
the fluid domain. The distance between the faces of the VFs was monitored during the solution;
when it was below the defined minimal distance (0.15 mm used here), the mesh morphing
was stopped at these elements and the flow velocity was set to zero. Under these conditions,
the structure and fluid nodes were temporarily decoupled and were allowed to come into contact.
Collision between the two VFs was modelled by a symmetric surface-to-surface contact pair
of face elements solved by the augmented Lagrangian method implemented in the ANSYS R©
Academic Research Mechanical, Release 15.0. Coulomb friction was assumed between the
contact surfaces. The default friction coefficient of 1.0 was used to achieve sticking during the
glottal closed phase.
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2.6. Studied output and evaluation of results

The results from the structural model were assessed from the selected nodes of the VF surface
(see the evaluating points marked in Fig. 1a). Vocal fold edge waveforms were captured from the
minimal width of the glottis in the medial-lateral direction in each iteration (VFL

min, VFR
min). Also,

the vibration characteristics were evaluated from the VFL
min, VFR

min to capture the maximum
glottal width (W max

g ), open quotient (OQ), closing quotient (ClQ), speed quotient (SQ) and
fundamental frequency of VF vibration (fo) [44].

The fluid results were evaluated in four points: 30 mm below (point s), 1 mm below (g),
30 mm above the upper surface of the VFs (e), and 5 mm up-stream from the lips (m), recall
Fig. 1c.

Electroglottographic (EGG) signal [73] was simulated by calculating the ratio between the
number of surface epithelium elements in contact and the total number of the elements (in
our case 24) on medial VF surface. All 24 elements in contact produced the EGG value of 1
and none of the 24 elements produced value of 0. In order to avoid discontinuities due to
density of the structural mesh, the data were subjected to a Gaussian smoothing implemented
in MATLAB R© R2017a.

3. Results and discussion

3.1. Influence of air compressibility on motion of the vocal folds

Fig. 3 shows typical results for displacements of the VFs in x direction during the phonation
of vowel [i:] while Table 4 compares VF vibration characteristics for the compressible and
incompressible flows evaluated from Fig. 3.

Fig. 3. Vocal fold edge waveforms in vowel [i:] for a) incompressible and b) compressible flows. Detailed
comparison of two aligned periods is shown in c). Empty and filled circlets denote the chosen periods
for the incompressible flow solution, and empty and filled triangles denote the chosen periods for the
compressible flow solution

Table 4. Vibration characteristics of the VFs

Compressibility W max
g [mm] OQ [–] ClQ [–] SQ [–] fo [Hz]

Off 0.39 0.28 0.13 1.10 133
On 0.43 0.42 0.15 1.82 137
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The maximum glottal width W max
g is 7.97% higher (0.39 mm vs. 0.43 mm) in the case of

compressible fluid flow. The higher W max
g results from the more compliant environment of the

compressible flow compared to incompressible flow and from the structure-acoustic interaction
(SAI) below the first acoustic resonance in the VT. The W max

g through the both computed variants
was less than 0.5 mm which is about 2–4 times less than the usual width of glottis reported in
the literature [4, 72]. Such an effect is caused by the small subglottic pressure pL considered in
this study. The rather small pressure pL influences also other quantities proportionally, more in
Section 3.2.

A small peak located at the beginning of the opening phase was observed in the compressible
solution, see Fig. 3c. This can be attributed to the interaction of the acoustic waves with the
VF vibrations: the little peak was missing in the first period of the compressible flow when the
acoustic wave was not yet fully present in the VT.

The small peak prolonged open phase and made it unsymmetrical. On that account the OQ
from compressible solution falls within the range observed in human male subjects during
normal phonation, where the 95% confidence interval of the OQ has been reported to be
0.36–0.76 in the middle of glottis [44], even though the low pL used here applies rather to
a soft phonation. More unsymmetrical open phase caused that SQ is higher than men’s 95%
confidence interval 0.32–1.44 [44] contrary to SQ from incompressible solution, which lies in
that interval. Asymmetry of the open phase is also demonstrated by ClQ.

Combination of longer open phase and shorter closed phase in compressible model (visible
in Fig. 3c) lead to 2.74% higher fundamental frequency f0 (133 Hz vs. 137 Hz).

These differences show interaction between acoustics at compressible solution and other
domains and therefore illustrates the importance of the SAI for the behavior of the voice source.
Similar effect was published in [46], where changes in CQ and ClQ were caused dominantly
by the acoustic loading.

3.2. Comparison of the simulated waveforms
Fig. 4 plots the computed waveforms of aerodynamic, vibratory, acoustic and EGG signals for
both the incompressible (left) and compressible (right) airflow solution in the vowel [i:]. The
compressible-incompressible differences are most apparent when comparing any of the pressure
signals (Figs. 4a and 4b) or the power spectral densities (PSDs, Figs. 4m and 4n); these are
largely influenced by the acoustic waves propagating in the compressible air.

The acoustic waves are apparent as oscillations in both subglottal (ps) and epilaryngeal
(pe) pressure signals in the compressible case (Fig. 4b). The peaks occurring in the ps and
pe in the incompressible case (Fig. 4a) are caused solely by the VF self-oscillations. In both
compressible and incompressible cases, the subglottal pressure ps oscillates around the mean
value pL = 270 Pa and the epilaryngeal pressure pe oscillates around 0 Pa, as expected.

In both cases, the VFs vibrate with phase differences between the lower and upper margins.
This can be observed in the displacements ux of the two nodes VF1R and VF2R (Fig. 4c, d); recall
Fig. 1 for location of these nodes. The glottal width Wg is wider in the case of compressible
flow as shown also in Fig. 3c.

The flow velocity waveforms vg (Figs. 4e and 4f) are similar to each other, with higher
maxima in the case of the incompressible flow. Notice that the velocity maxima occur at the
very end of the open phase when the glottal width becomes small. This is mainly caused by the
inertance of a fluid column: the fluid flow, see Fig. 4e, leads the pressure, see Fig. 4a, in phase
as in [75]. The waveform shapes are very similar to those obtained by Alipour and Scherer [4],
only the vg maximum is about two times lower in our case which is related to the four times
lower pL used here compared to [4, 72].
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Fig. 4. Comparison of the results obtained for incompressible (left panels) and compressible flow (right
panels); a), b) subglottal pressure (ps) and epilaryngeal pressure (pe); c), d) displacements in x direction
(ux) of the two nodes VF1R and VF2R; e), f) flow velocity between the VFs (vg); g), h) glottal flow (Ug)
on the level of the nodes VFR and VFL; i), j) EGG signal and its time derivative; k), l) pressures near
the mouth (pm); m), n) the power spectral density near the mouth (PSDm) from the pm windowed by the
Hamming window of 512 samples length. The time instances shown by the blue, red and green vertical
lines in panels a)–l) approximately correspond to the phases at which the glottis takes convergent, parallel
and divergent glottal shapes, respectively (see also Figs. 5 and 6)

The shape of the vg is related to the glottal flow volume velocity Ug (Figs. 4g and 4h):
zero Ug occurs during the glottal closure matching the vg.

The simulated EGG signal confirms that the contacting phase is significantly shorter than
the decontacting phase; this agrees with the observations of normal EGG waveforms in human
phonations for vowel [i:] [16].
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The pressures near the mouth pm are shown in Figs. 4k and 4l. Whereas in the incompressible
case (Fig. 4k) these pressure waveforms are similar to the epilaryngeal pressures pe (recall
Fig. 4a), the compressible case (Fig. 4l) reveals pressure fluctuations related to the acoustic
resonances of the VT.

The power spectral densities (PSDs) of the pressures pm are displayed in Figs. 4m and
4n. The compressible case (Fig. 4n) shows formant peaks in PSD which are well within the
normal range of formant frequencies F1 ≈ 215–348 Hz and F2 ≈ 1952–2558 Hz (marked with
green) reported for the Czech vowel [i:] [56]. The formant frequencies approximate the first two
resonances of the VT calculated by the 2D and also 3D modal analysis in ANSYS R©. In both
cases, they were 318 and 1957 Hz, respectively. The boundary conditions were in accordance
with the open lips and closed VFs. The simulated formants were validated previously using an
experimental setup with the identical geometry of the VT made from plexiglass [32] and also
by the sound signal of the same vowel [i:], which was acquired during the scan of the original
geometry in MRI [80]. The simulated formants fit the measured [i:] vowel formant ranges from
both [32] and [80].

No formant peaks occur for the incompressible flow (Fig. 4m), reflecting the fact that there
are no acoustic waves propagating in the VT in this case.

3.3. Compressibility influence on air pressures and velocities

The flow velocities in the glottis region, together with the VF shape, are depicted in Fig. 5
for three different time instants at which the VFs take convergent, parallel and divergent cross-
sectional shapes. The jet deflection of fluid flow above the VFs appears during typical oscillation
period always, as shown.

Fig. 5. Flow velocity in the glottis in incompressible (top panels a–c) and compressible (bottom panels d–f)
air models. Three time instants are selected displaying a), d) convergent; b), e) parallel, and c), f) divergent
glottal shapes. The VF upper surface level is related to the line marked in Fig. 6
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Fig. 6. Comparison of the centerline axis air pressures (panels a, b) and flow velocities (panels c, d)
for incompressible (left) and compressible flow (right). The style and color of the lines correspond to
convergent, parallel and divergent glottal shapes as marked in Fig. 4. The VF upper surface level is
marked by the thin black line

The pressures and flow velocities along the airways axis are depicted in Fig. 6 for the same
time instants as in Figs. 4 and 5. The analyzed region was chosen similar to [4].

The changing shape of the VFs during the oscillatory cycle influences the pressure and
velocity distribution along the FE model from the trachea to the epilarynx. The pressures shown
in Figs. 6a and 6b evince similar dependence: in the trachea, the pressure is close to the preset
value of 270 Pa and it drops after passing the VFs. The largest pressure drop occurs during
the divergent shape independently of compressibility which corresponds to the observations
in [4, 19, 45, 63]. A local minimum of the pressure during the divergent glottis appears just
below the upper surface of the VFs. The higher pressure below VFs and the lower above the
VFs ensure nonzero airflow, which allows the VF oscillation [4].

The centerline velocities for the incompressible and compressible airflows are shown in
Figs. 6c and 6d, respectively. As expected, the highest velocities occur just below the upper VF
level in the narrowest part of the glottal channel. The overall shape of the velocity curves is
similar for the both computed variants, as is the location of the highest velocity peak during the
divergent shape. The location of the velocity peak in the divergent glottal shape matches the
local minima of the centerline pressure; the match between the pressure minimum and velocity
maximum is a logical consequence of the energy preservation principle and agrees with the
data reported in [4,45]. A deeper pressure drop produces higher peak in the centerline velocity.
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When the flow passes the VF level, there is a region influenced by vortices in the expanded
duct closely above the VF level. Except for the glottis and surrounding areas where the flow
velocities can exceed 20 m · s−1, the velocities are low, around 1 m · s−1.

4. Overall discussion and conclusion

This study presents a 2D FE model which simulates airflow-driven self-sustained oscillati-
ons of the VFs with collisions, interacting with subglottal and VT, solved numerically using
compressible Navier-Stokes equations. The model inherently incorporates the complete fluid-
structure-acoustic interactions. To the best of our knowledge, such level of complexity for the
modeling of phonatory phenomena has not yet been reported in the literature.

In this study, the model was explored to study the influence of air compressibility on the
resulting flow, vibratory and acoustic parameters while keeping all other model parameters
constant. In FE modeling studies, the air in the trachea and the VT is commonly considered to
be incompressible. This approach simplifies the simulation, but disregards interactions between
acoustics and the flow and between acoustics and the VF structure. If we put the acoustic
interactions aside, incompressible flow should meet, in general, two conditions: The first one –
the flow velocity should be low, underMa = 0.3 (c. 106 m · s−1) [6]. In our study, the maximal
flow velocities vg, which appeared in the glottal region, were under 35 m · s−1 (c. Ma = 0.1).
These are rather low velocities which meet the condition. They can be related to the rather low
lung pressure pL. The values of the vg and pL can be expected to be two to four times higher in
simulations related to the most common conditions from healthy human phonations [4, 38–40,
61,72], which still meets the condition on low Mach number. And the second one – the variation
of the fluid density in the flow should be minimal [82]. Our simulations with compressible
equations reveal that the obtained density variation is nearly thousand times smaller than the
mean value of air density. Thus the second condition is met also.

Results from our model indicate, however, that the incompressible flow should be used
carefully even if these two assumptions are fulfilled. Most importantly, the complete FSAI
should be considered for accurate modeling of the phonatory phenomena to include generally
non-linear relationships between acoustics and other two fields.

Two types of non-linear source-tract interactions can be distinguished in a phonatory sys-
tem [75, 77]: level 1 interactions, where the glottal flow waveform is influenced by acoustic
resonances; and level 2 interactions, where the acoustic resonances influence also the VF os-
cillations. Our simulations with compressible air demonstrate the influence of VT acoustics on
both the glottal flow (Fig. 4) and on the VF oscillations (Fig. 3).

The air compressibility affects the VF motion, glottal flow, and the pressure waves in the
VT. The most affected quantity was the open quotient OQ, while the vibration frequency f0
was affected much less. Both the incompressible and compressible models achieved symmetric
and stabilized self-oscillations after a few periods of a transient regime. The VFs changed their
shape between convergent and divergent, and the fundamental vibration frequency f0 matched
that of the human VFs [72].

As far as the limitations are concerned, the model presented here had numerical difficulties
with the glottal fluid mesh, which was heavily distorted in cases of increased lung pressure
values. Therefore the lung pressure was kept rather low here. This limitation is planned to be
addressed in future studies.

For simplicity, VT for only one Czech vowel, [i:], was considered here. The formant frequen-
cies of the simulated vowel were in good agreement with the vowel formant frequencies observed
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P. Hájek et al. / Applied and Computational Mechanics 15 (2021) 133–152

in Czech speakers [56], with the results of other experiments based on VT with the identical
geometry [32] and with the formant frequencies from the sound signal measured during the MRI
scan [80].

In principle, the model allows using any VT shapes for different vowels. This opens up new
possibilities for investigating the phonatory phenomena relevant for human phonation including
the influence of different VT shapes on the VF oscillations. Information on these phenomena
is relevant not only for understanding the physiologic speech processes, but also for speech
therapy and singing voice where the source-vocal tract interactions are considered to play an
important role [30, 49, 74, 76, 81].
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models of laryngeal aerodynamics: Potentials and numerical costs, Journal of Voice 33 (4) (2019)
385–400. https://doi.org/10.1016/j.jvoice.2018.01.001

[52] Scherer, R. C., Shinwari, D., De Witt, K. J., Zhang, C., Kucinschi, B. R., Afjeh, A. A., In-
traglottal pressure profiles for a symmetric and oblique glottis with a divergence angle of
10 degrees, The Journal of the Acoustical Society of America 109 (4) (2001) 1616–1630.
https://doi.org/10.1121/1.1333420

[53] Schickhofer, L., Malinen, J., Mihaescu, M., Compressible flow simulations of voiced speech using
rigid vocal tract geometries acquired by MRI, The Journal of the Acoustical Society of America
145 (4) (2019) 2049–2061. https://doi.org/10.1121/1.5095250

[54] Schickhofer, L., Mihaescu, M., Analysis of the aerodynamic sound of speech through sta-
tic vocal tract models of various glottal shapes, Journal of Biomechanics 99 (2020) 109484.
https://doi.org/10.1016/j.jbiomech.2019.109484

[55] Sigrist, J. F., Fluid-structure interaction: An introduction to finite element coupling, Chicheste,
Wiley & Sons, 2015. https://doi.org/10.1002/9781118927762

[56] Skarnitzl, R., Volı́n, J., Reference values of vowel formants for young adult speakers of standard
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[87] Zörner, S., Kaltenbacher, M., Döllinger, M., Investigation of prescribed movement in fluid–
structure interaction simulation for the human phonation process, Computers & Fluids 86 (2013)
133–140. https://doi.org/10.1016/j.compfluid.2013.06.031

152

https://doi.org/10.1121/1.3506347
https://doi.org/10.1121/1.4864479
https://doi.org/10.1121/1.1506694
https://doi.org/10.1121/1.1506693
https://doi.org/10.1121/1.3592216
https://doi.org/10.1016/j.compfluid.2013.06.031

