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Abstract

Gear trains are plagued by self-excited vibrations that are concentrated at the mesh frequency and its harmonics
due to their varying mesh stiffness and deviations from the ideal involute profile. This is even more pronounced in
spur gears due to their lower contact ratio in comparison to helical gears. For an electric vehicle, due to the absence
of an internal combustion engine, noise and vibration signature of the gearbox becomes an important aspect of the
vehicle’s comfort. However, the presence of a traction motor offers the advantage of having a potential actuator
for actively countering these vibrations without adding any additional weight or packaging constraints. This paper
presents a fundamental insight into the effect of introducing controlled torque ripples at the mesh frequency and
its harmonics, on the noise and vibration characteristics, and the efficiency of the gear mesh. The study utilises a
dynamic model of a single stage gear train that accounts for the time varying mesh stiffness and sliding friction at
the gear teeth contact. This model is used to provide an understanding of gear mesh dynamics and their resulting
interaction with the imposed torque ripples. The study demonstrates the positive effects that controlled torque
ripples can have on the noise and vibration behaviour of gear trains and the underlying mechanics that govern this
improvement.
© 2023 University of West Bohemia.
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1. Introduction

Transmission systems experience vibrations that arise over a wide spectrum of frequencies due
to various sources. A significant portion of these are an outcome of the very nature of the gear
mesh process. These are self-excited in nature and are concentrated at the gear mesh frequency
and its harmonics. They are a consequence of the variation in the mesh stiffness as the teeth
move in and out of engagement and deviations from the involute profile of the gear teeth. The
vibrations generated at the gear mesh eventually reach the end user in the form of structure borne
vibrations and gear whine noise. This can degrade the comfort of vehicles, especially electric
vehicles where the lack of a combustion engine makes vibrations more perceptible. Gear whine
noise can further restrict efforts to reduce the weight of transmission systems as weight reduc-
tion invariably leads to reduced stiffness and degraded noise, vibration and harshness (NVH)
response.

Over the years, numerous studies have aimed at improving the NVH behaviour of trans-
mission systems using active solutions, since the periodic nature of gear whine noise makes
it particularly suited to such approaches. The approaches vary in terms of control strategies,
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actuator types and actuator locations. Some studies target the source of the vibration, i.e., the
gear mesh, like the method proposed by Chen and Brennan in [5]. This study used magne-
tostrictive actuators and accelerometers mounted tangentially on one of the meshing gears and
acted directly on the angular acceleration of the gears. Other studies have focused on actively
isolating the vibrations from reaching the housing. In [9], Guan presented an active control con-
cept consisting of piezoelectric actuators acting on the vibration transfer path between the gear
and the shaft. Here, the actuators not only generate control forces to minimise the vibrations,
but also serve as a transmission medium for the mean torque. Other approaches have aimed at
countering vibrations by applying a control force on the gear shaft, see [8, 15] and [17]. While
these solutions have proven effective in limiting vibrations concentrated at the mesh orders,
additional actuators must be integrated.

Electric and hybrid-electric vehicles hold an advantage in this regard as they already have
an actuator that can be used to reduce gear whine noise, i.e., the traction motor, making it
easier to meet packaging and financial constraints. Such an approach was demonstrated by
Benzel and Möckel [3] in which they were able to achieve a net reduction of 12 dB in the
housing vibration. In [2], it was further shown that the system is effective for varying speeds
and loading conditions, as well. The studies, however, did not elaborate on the interaction
between the torque ripples produced by the controller with the gear mesh dynamics.

The filtered-x least mean square (FxLMS) controller is widely used for addressing gear
whine noise. However, the choice of actuators and their configurations vary; each offering its
advantages and limitations. Using the traction motor can help overcome these limitations. This
study presents a fundamental investigation into the interaction between the controlled torque
ripples and gear mesh dynamics. This is achieved by means of a lumped mass model of a spur
gear train that accounts for the time varying mesh stiffness, sliding friction at the gear contact,
and load sharing between the teeth in contact as described in Section 2. The model is then used
to simulate a feed-forward FxLMS controller to generate controlled torque ripples, which is
described in Section 3. The interaction of the controlled torque ripples with the gear mesh are
evaluated and analysed in Section 4.

2. Mathematical model

The study uses a 8 degree of freedom (DOF) model shown in Fig. 1 that is based on the model
presented by Song [11] and Brethee [4]. It consists of four torsional DOF that are represented by
θ. The other four DOF are translational in nature and are represented by y and x along the line of
action (LOA) and in the direction perpendicular to the line of action (PLOA), respectively. The
gears are modelled as rigid disks and their mesh stiffness Km(t) along the LOA is evaluated
using a stationary contact analysis described in Section 2.2. The shaft support bearings are
modelled as springs (Kbx and Kby) and dampers (Cbx and Cby) in two mutually perpendicular
directions, i.e., along the PLOA and LOA. The load side, drive side, and shafts are indicated by
subscripts ’L’, ’d’, and ’s’, respectively. The net normal contact force FN between the two gears
acts along the LOA and is a consequence of the applied torque.

2.1. Equations of motion

The terms with subscript ’g’ refer to the driving gear with a base radius of rbg, henceforth
referred to as ’gear’. The terms with subscript ’p’ refer to the driven pinion with a base radius
of rbp, henceforth referred to as ’pinion’. Using the Lagrange’s equations, the equations of
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Fig. 1. Model of the system

motion are obtained as

Jdθ̈d + Cs(θ̇d − θ̇g) +Ks(θd − θg)−Md = 0 , (1)

Jgθ̈g + Cs(θ̇g − θ̇d) +Ks(θg − θd) + rbgFN +Mfg = 0 , (2)

Jpθ̈p + Cs(θ̇p − θ̇L) +Ks(θp − θL)− rbpFN +Mfp = 0 , (3)

JLθ̈L + Cs(θ̇L − θ̇p) +Ks(θL − θp) +ML = 0 (4)

for the rotational degrees of freedom, and as

mgẍg + Cbxẋg +Kbxxg − Ffg = 0 , (5)
mgÿg + Cbyẏg +Kbyyg + FN = 0 , (6)
mpẍp + Cbxẋp +Kbxxp − Ffp = 0 , (7)
mpÿp + Cbyẏp +Kbyyp − FN = 0 (8)

for the translational degrees of freedom. Here, m and J refer to the mass and inertia of the
corresponding component, respectively. The forces Ffp and Ffg, and the moments Mfp and
Mfg are a result of the sliding friction that exists at the point of contact, and are described in
Section 2.4. The load ML is set at a constant value to reach a steady state condition while the
drive torque Md is determined by the controller described in Section 3. The net normal contact
force acting between the gear teeth along the LOA is evaluated as

FN = Cm(t)(θ̇grbg − θ̇prbp + ẏg − ẏp) +Km(t)(θgrbg − θprbp + yg − yp)

= Cm(t) δ̇ +Km(t) δ, (9)
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where the mesh damping Cm(t) is evaluated using a structural damping factor and the mesh
stiffness Km(t).

The transmission error (TE) is described as the difference between the actual position of
the output gear and the position that it would occupy if the gear drive was perfectly conjugate,
see [1, 14] and [18]. Under load, this error stems from numerous sources in the geartrain,
which include geometry, deflections and deformation, dynamics of the gears, and may further be
influenced by assembly errors such as misaligned shafts. This study considers the component of
the transmission error that is concentrated at the gear mesh frequency and is a result of the time
varying mesh stiffness between the gear teeth in contact. This time varying gear mesh stiffness
is an outcome of the periodic variation in the number of teeth in contact and the variation in
the stiffness of the gear pair based on the location of the point of contact. At low speeds, in
the absence of dynamic effects, this component of the transmission error is referred to as the
static transmission error. At higher speeds, when the dynamic effects such as the inertia of the
rotating components are considered, it is referred to as the dynamic transmission error. The
terms δ and δ̇ in (9) refer to this component of the transmission error between the two gears in
contact and its rate of change along the LOA.

2.2. Mesh stiffness

The mesh stiffness of the spur gear pair is evaluated using a stationary contact analysis per-
formed in COMSOL Multiphysics 5.6® by considering a penalty contact between the gear teeth
in contact [6]. A soft penalty contact is used to account for the bending and deformation of the
gear teeth. The gears are provided with a hinge joint about their centres, which allows rotational
motion about the out-of-plane axis. During the simulation, with every iteration, the drive gear
and driven pinion are rotated by a fixed incremental value. An additional twist is then imposed
on one of the gears and the resulting reaction torque about the hinge joint is recorded. Using
the angle of twist and the reaction torque, the torsional stiffness of the gear pair in contact is
evaluated at the point of contact. The analysis is performed over a single mesh period and
subsequently the mesh stiffness is evaluated along the line of contact. It is then fed into the
simulation by means of a look-up table with cubic interpolation using θg as breakpoints. The
mesh stiffness along the LOA is shown in Fig. 2. The driving gear and driven pinion are spur
gears with 70 and 48 teeth, respectively. They have a module of 2 mm and a pressure angle of
20◦ represented by α.

Fig. 2. Mesh stiffness along the LOA Fig. 3. Load sharing ratio along gear mesh
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2.3. Load sharing

The normal contact force in (9) is the equivalent normal contact force acting between the two
gears. To determine the sliding friction forces at the contact points, the equivalent normal
contact force has to be split into its local contact components. These components are evaluated
based on the approach suggested by Pedrero [16]. As a pair of teeth enter the meshing region
and establish contact, the load sharing ratio varies from 0.33 to 0.66 during the first phase of
double contact, see Fig. 3. It increases to one during single contact and then varies linearly from
0.66 to 0.33 during the second phase of double contact. This behaviour is independent of the
gear parameters, such as: the number of teeth, centre distance, profile shift coefficients, etc. At
any instant, the normal load between the two pairs of teeth in contact is given by

FN2 = FNR(ξ) ,

FN1 = FN [1−R(ξ)] .
(10)

Here, the subscripts 1 and 2 refer to the pairs of teeth in contact, see Fig. 4, and R(ξ) refers to
the load sharing ratio. Furthermore, ξ is the ratio between the travel length along the LOA and
the base circular pitch, and its maximum value is equal to the contact ratio of the gear pair.

2.4. Friction forces and moments

The friction forces act along the PLOA, thus, perpendicular to the normal contact forces. The
direction of these friction forces acting on the gear and the pinion, i.e., Ffg and Ffp, depends
on the relative sliding velocity of the teeth in contact. Fig. 4 shows the direction of the friction
forces and resulting moments that arise as the contact points move along the LOA, i.e., AE.
Point B is where contact is established as the teeth enter the mesh region, while on reaching
point D the teeth lose contact. At point C, the point of contact is at the pitch point where the
sliding velocity is zero. Points 1 and 2 represent two generic positions before and after the
pitch point, respectively, where two pairs of gear teeth are in contact. As a pair of teeth comes

Fig. 4. Forces and moments acting on the driving gear (left) and driven pinion (right) during the mesh
process
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in contact at point B, the mesh enters the first double contact phase. As the gears rotate, the
previous pair of teeth loses contact on reaching point D and the mesh enters into single contact
phase. With further rotation, a new pair of teeth reach point B and establish contact. At this
point the mesh cycle enters the second double contact phase which lasts until the pair of teeth
lose contact at point D. The mesh process continues to repeat cyclically with the rotation of the
gears.

Let i represent the pair of teeth in contact. The friction forces that act at the contact interface,
act to minimise the relative sliding velocity between the gear teeth in contact and are given by

Ffgi = sgn(Vsi)FNi
µi = (−1)Ffpi , (11)

where sgn(.) is the signum function, Vsi represents the sliding velocity, and µi represents the co-
efficient of friction, which is evaluated locally using the elastohydrodynamic lubrication (EHL)
approach presented by Xu [19] for the 75W90 lubricant. Using this approach, the local coeffi-
cient of friction is evaluated as a function of the slide to roll ratio, i.e., the ratio of the sliding
and rolling velocity at the point of contact, which is given as

SRi =
2Sliding Velocity
Rolling Velocity

=
2Vsi

Vri

. (12)

Here, the sliding velocity Vsi and the rolling velocity Vri at the contact points are evaluated as

Vsi = (θ̇gρgi − ẋgi)− (θ̇pρpi − ẋpi), i ∈ [1, ceil (ξ)] ,

Vri = (θ̇gρgi − ẋgi) + (θ̇pρpi − ẋpi), i ∈ [1, ceil (ξ)] .
(13)

Here, ceil(.) refers to the operation that rounds up to the smallest integer greater than the input
value. Drawing reference to Fig. 4, ρgi and ρpi are the moment arms about which the friction
forces generate moments at the gear and pinion centres and these are calculated as

ρgi = AB +mod
(
rbgθg + (ceil (ξ)− i)σ, 2σ

)
,

ρpi = AE − ρgi .
(14)

Here, mod(X, Y ) refers to the modulo operation between X and Y , and is used to evaluate the
increase in the length of the moment arm for the gear (ρgi) as the contact point moves from
point B to point D, σ represents the base pitch of the gear pair, and

AE = (rp + rg) sinα,

AB = (rp + rg) sinα−
√

(rp + a)2 − (rp cosα)2 .
(15)

Here, a refers to the addendum and, rg and rp refer to the pitch radii of the gear and pinion,
respectively.

As a result, the value of the coefficient of friction varies depending on the relative sliding and
rolling velocities of the two gear teeth in contact. The value reduces to zero at the pitch point
as the sliding velocity reduces to zero and is maximum towards the start and end of the mesh
cycle. Additionally, as the point of contact moves across the pitch point, the direction of sliding
velocity reverses, causing the friction force to reverse direction, as well. This sudden change
in the direction of the friction force acts as an impulse excitation of the gears, leading to lateral
vibration along the PLOA (ẍg and ẍp). Furthermore, the friction forces generate moments about
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the centres of meshing gears (Mfg and Mfp), contributing to their angular vibration (θ̈g and θ̈p).
The amplitude of the forces depends on the local coefficient of friction and the normal contact
force, while their direction opposes that of the sliding velocity as shown in (11).

The net friction forces and the corresponding moments are evaluated as the sum of the
components at each point of contact

Ffk =

ceil(ξ)∑
i=1

Ffki , Mfk =

ceil(ξ)∑
i=1

Ffki ρki , where k = p, g. (16)

3. Controller

The controlled torque ripples are generated using a FxLMS controller, which has been widely
used and discussed in literature to control whine noise in transmission systems. This section
provides a brief description of the FxLMS controller that has been implemented based on the
work by Kuo [13]. The control signal is generated to minimise the error signal or the residual
signal. Making reference to Fig. 5, the error signal can be described by

e(t) = d(t) + s(t) ∗ y(t) = d(t) + y′(t) . (17)

Here, d(t) is the noise, s(t) is the impulse response of the secondary path and y(t) is the out-
put of the actuator through which the control effort is executed. The symbol ’∗’ represents
convolution. The control output of the actuator takes the form

y(t) = wc cosϕ+ ws sinϕ

= {wc ws}
{
cosϕ
sinϕ

}
= wT(t)x(t).

(18)

Here, ϕ refers to the phase angle, which is taken as θg for this implementation. The signal
x(t) is the reference signal. The coefficients of the sine and cosine contributions to the actuator

Fig. 5. Structure of the speed (PID) and vibration (FxLMS) controller
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output are determined by means of the steepest gradient descent algorithm that minimises the
instantaneous squared error. The cost function is, thus, given by

ζ(t) = e2(t). (19)

The coefficients described in (18) are calculated iteratively with every time step (i.e., n) with a
step size of κ, i.e., learning rate. The update equation is given by

w [n+ 1] = w [n]− κ

2
∆t∇ζ [n] = w [n]− κ∆t

{
ŝ [n] ∗ cosϕ e [n]
ŝ [n] ∗ sinϕ e [n]

}
. (20)

Here, ∆t refers to the size of the time step. The signal x(t) is filtered through the estimate of
the impulse response of the secondary path ŝ, to compensate for the phase lag that occurs in the
system.

The secondary path of the system is identified by using a chirp signal across the desired
frequency range. It is included in the algorithm in the form of a look-up table containing the
real and imaginary parts of the secondary path for discrete frequency values, see [12]. For
intermediate frequency values, a linear interpolation is performed. This approach offers a com-
putational advantage by replacing convolution with complex multiplication. In addition to the
FxLMS controller, the control system uses a proportional-integral-derivative (PID) controller to
set the steady state torque Ts that is required to maintain the steady state condition of the system.
The controlled torque ripples generated by the FxLMS controller are then superimposed on this
steady state torque.

The net output of the controller is the drive torque Md and is applied on the input shaft by
the traction motor, which is assumed to be ideal and given as

Md(t) = Ts(t) + y(t) . (21)

4. Results and discussion

Using the model described above, simulations are performed using Matlab Simulink® with a
time step of 10−6 s. The simulations are performed for a mesh frequency of 200 Hz and a load
of 20 N m. Three controllers named A, B, and C have been implemented, which use θ̈g, ÿg, and
θ̈p as the error signals, respectively. They target the first three harmonics of the mesh frequency.
The respective error signal and angular velocity of the drive shaft are given as input to the
controller and the calculated torque is applied as the drive torque Md. The simulations are used
to compare the behaviour of the system without the controller, i.e., baseline system, and the
behaviour of the system when the controller is used, i.e., controlled system.

Fig. 7 shows the impact of Controller A. The torque ripples introduced by the controller
cancel out the angular vibration of the driving gear at the first three harmonics of the mesh
frequency, Fig. 7a. Furthermore, the controller is also able to reduce the peak-to-peak TE of
the gear train, see Fig. 7e. However, despite the reduction in the peak-to-peak TE, the lateral
vibrations of the shafts along the LOA only experience minor attenuation, as it is evident from
Figs. 7c and 7d. This can be attributed to the fact that although the controller cancels out
the angular vibration of the gear, its effect on the angular vibration of the pinion is very low,
see Fig. 7b. As a result, the controller is not very effective in dampening the fluctuation in
the normal contact forces, which are the source of excitation of ÿg and ÿp, see Fig. 6. Thus,
the vibration of the shaft and consequently the vibration transfer to the transmission housing
experience low attenuation. Hence, the impact on the gear whine noise will be minimal.

112



S. Dave et al. / Applied and Computational Mechanics 17 (2023) 105–120

Fig. 6. Normal contact forces

Fig. 7f shows the torque profile determined by the controller. The controller tries to follow
the time varying mesh stiffness. This is because by following the mesh stiffness, the controller
is able to reduce the peak-to-peak TE and the gear angular vibration, i.e., the error signal for the
controller.

As discussed by Guangjian [10] and Rincon [7], the mesh stiffness and TE are related in the
following manner:

Km(t) ∝
FN(t)

δ(t)
=⇒ δ(t) ∝ FN(t)

Km(t)
=⇒ δ(t) ∝ Md(t)

Km(t)
. (22)

Here, δ(t) refers to TE. Thus, if the normal force FN(t) or the torque Md(t) follow the same
trend as the mesh stiffness, the peak-to-peak TE would decrease, which is also observed in the
simulation result. The mean value of the torque determined by the PID controller acting against
the mean value of the mesh stiffness establishes the steady state condition while the torque
ripples determined by the FxLMS algorithm compensate for the variation in the mesh stiffness.

Fig. 8 shows the results of the simulation with Controller B. The vibrations in the drive shaft
along the LOA are a direct result of excitation due to the normal contact forces. Reducing the
fluctuation of the normal contact forces about the average normal contact force would result in a
reduction of the error signal that is considered here. In Fig. 8c, the effect of the controller on the
error signal can be seen. The vibrations of the drive shaft along the LOA are eliminated in the
first three orders. Furthermore, since the vibrations of the driven shaft along the LOA are due
to the same excitation source, they are also eliminated at the targeted frequencies, see Fig. 8d.
The controlled torque ripples introduced by the controller are very effective in dampening the
fluctuations in the normal contact force as can be seen in Fig. 6. So even though the reduction
in the peak-to-peak TE with Controller B is not as significant as it was with Controller A,
Figs. 8e and 7e, respectively, the decrease in the vibration of the shafts along the LOA direction
is higher. A reduction in the vibration of the shaft would mean lower transmission of vibration
to the gearbox housing and a decrease in gear whine noise.

The angular vibration of the pinion also experiences attenuation at the first three mesh orders
(see Fig. 8b) when the acceleration of the drive shaft along the LOA is targeted by Controller B.
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(a) (b)

(c) (d)

(e) (f)

Fig. 7. Results with Controller A: (a) Power spectral density (PSD) of gear angular acceleration, (b) PSD
of pinion angular acceleration, (c) PSD of drive shaft acceleration along LOA, (d) PSD of driven shaft
acceleration along LOA, (e) transmission error (TE), and (f) torque profile applied by the controller and
the gear mesh stiffness
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(a) (b)

(c) (d)

(e) (f)

Fig. 8. Results with Controller B: (a) Power spectral density (PSD) of gear angular acceleration, (b) PSD
of pinion angular acceleration, (c) PSD of drive shaft acceleration along LOA, (d) PSD of driven shaft
acceleration along LOA, (e) transmission error (TE), and (f) torque profile applied by the controller and
the gear mesh stiffness
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(a) (b)

(c) (d)

(e) (f)

Fig. 9. Results with Controller C: (a) Power spectral density (PSD) of gear angular acceleration, (b) PSD
of pinion angular acceleration, (c) PSD of drive shaft acceleration along LOA, (d) PSD of driven shaft
acceleration along LOA, (e) transmission error (TE), and (f) torque profile applied by the controller and
the gear mesh stiffness
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(a) (b)

(c) (d)

(e) (f)

Fig. 10. Response of system to sliding friction: (a) Controller A: PSD of driveshaft acceleration along
PLOA, (b) Controller A: Power Loss, (c) Controller B: PSD of driveshaft acceleration along PLOA,
(d) Controller B: Power Loss, (e) Controller C: PSD of driveshaft acceleration along PLOA, and (f) Con-
troller C: Power Loss
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Considering this, Controller C using the angular vibration of the pinion was set up and the
results are shown in Fig. 9. The controller is able to reduce the fluctuations in the normal
contact force, Fig. 6. Thus, Controller C is more effective than Controller A in reducing ÿg and
ÿp, Figs. 9c and 9d, and Figs. 7c and 7d. Furthermore, the torque profile set up by Controller C
is similar to the one that was set up by Controller B, indicating that they have a similar effect.

The vibrations along the PLOA are a direct outcome of the forces due to sliding friction.
None of the implemented controllers lead to an improvement in shaft vibration along PLOA,
i.e., ẍp or ẍg, as can be seen in Figs. 10a, 10c, and 10e. This indicates that the controllers have
minimal impact on the friction forces, which is why the power loss due to sliding friction also
remains largely unaffected as can be seen in Figs. 10b, 10d, and 10f.

5. Conclusion and future scope

It has been demonstrated that using controlled torque ripples is an effective approach to reduce
the vibrations of a gear train at the mesh orders. However, it is important to select the correct
error signal for attenuation. As far as reducing gear whine noise is concerned, limiting the
transfer of vibrations to the gearbox housing is crucial. Controlling the angular vibration of the
driving gear is not very effective in this regard. Due to the excitation that arises as a result of the
time varying mesh stiffness, reducing the angular vibration of the driving gear using Controller
A does not result in a comparable decrease in the angular vibration of the driven pinion or the
LOA vibrations in the shaft. On the other hand, the opposite approach of using Controller C
to attenuate the angular vibrations in the driven pinion proves to be much more effective in
attenuating the vibrations along LOA in the shafts. The net effect of controlling the angular
acceleration of the driven pinion is similar to directly controlling the vibration of the drive shaft
along the LOA.

Controller B is the most effective from the point of view of reducing gear whine noise.
This is because vibration in both the shafts are eliminated at the targeted frequencies along the
LOA. This would result in a reduction of the vibrations being transferred to the housing and a
corresponding reduction in gear whine noise.

The simulations were performed considering an ideal case in order to understand the be-
haviour of the controllers. In a practical application, the system will be less effective due to the
dynamics of the motor, errors in identification of the secondary path, noise from the sensors,
and limited resolution of the encoders. While the effect of the controlled torque ripples on the
efficiency of the gear train is not very significant in terms of sliding friction losses, generating
torque ripples at high frequencies will be challenging for the traction motor and would lead to
increased switching losses in the inverter due to the requirement of higher switching frequen-
cies. Furthermore, since the controller uses the angular position of the driving gear to generate
controlled torque ripples, its performance will depend on the accuracy and resolution of the
signal. Using a high resolution encoder for this purpose can increase the cost of the system and
using virtual sensing approaches can be a potential alternative.
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