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Abstract

The effectiveness of explicit direct time-integration methods is conditioned by using diagonal mass matrix
which entails significant computational savings and storage advantages. In recent years many procedures that
produced diagonally lumped mass matrices were developed. For example, the row sum method and diagonal
scaling method (HRZ procedure) can be mentioned. In this paper, the dispersive properties of different lumping
matrices with variable mass distribution for the plane square 8-node serendipity elements are investigated. The
dispersion diagrams for such lumping matrices are derived for various Courant numbers, wavelengths and the
directions of wave propagation.
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1. Introduction

The numerical solution of the fast transient elastodynamics problem by the finite element
method produces the dispersion errors: numerical attenuation or amplification, polarizations
errors, numerical anisotropy, error in phase and group speeds, extraneous parasitic modes, nu-
merical diffraction and scattering. These errors are induced by spatial and time discretizations.
Accuracy of finite-element modelling is possible to influence by the choice of the element type,
mesh size, time integration method, time step or modified mass matrix.

Krieg and Key [9] studied the one-dimensional constant strain elements for the numerical
solution of the one-dimensional wave equation. Belytschko and Mullen [2] extended this dis-
persion analysis of one-dimensional elements to higher (quadratic) order for the Newmark’s
method and central difference method and consistent and lumped mass matrix. It was shown
that a spurious branch in the spectrum existed. The existence of this branch caused the presence
of noise associated with the propagation of discontinuities. In the textbook by Brillouin [3]
on crystal periodic structures, the lowest branch was called theacousticbranch and the higher
branchesoptical branches. A quite extensive paper was published by Abboud and Pinsky [1].
The authors analyzed the three-dimensional second-order scalar Helmholtz equation. The anal-
ysis was conducted for the trilinear rectangular 8-node elements, for the triquadratic rectangular
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27-node elements and for the serendipity rectangular 20-node elements using various mass ap-
proximations.

In this paper, we follow up with recent author’s work on the dispersion study [7, 10, 11,
8, 12], specifically the dispersion analysis of the numerical time-integration schemes [7]. The
dispersive properties of different lumping matrices with variable mass distribution for the plane
square 8-node serendipity elements are investigated. The optimal lumped mass matrix preserv-
ing the total element mass, physical symmetries and positivity is proposed.

2. Elastic plane waves

Theith equation of motion pertinent to linear elastodynamics reads

(Λ + G)uj,ji + Gui,jj = ρüi (1)

whereΛ andG areG are Laḿe’s constants,ρ is density,ui and üi is ith component of the
displacement vector and acceleration vector. Lamé’s constantsΛ andG can be expressed by
engineering constantsE, ν as

Λ =
νE

(1 + ν) (1− 2ν)
, G =

E

2 (1 + ν)
. (2)

The analytical solution of the motion equation (1) for an unbounded isotropic continuum
can be found in the closed form, two types of planar waves exist: the longitudinal wave and the
transversal wave. The longitudinal wave propagates with the speedc1 and the transversal wave
propagates with the speedc2. The speedsc1 andc2 are given by relations

c1 =

√
Λ + 2G

ρ
, c2 =

√
G

ρ
. (3)

The time history of displacement of a plane harmonic solution reads

ui = Ui(x) exp(ik (p · x± ct)) = Ui(x) exp(i(k · x± ωt)), i = 1, 2, (4)

wheret denotes time,k is the wave vector,p is the unit normal to the wave front,k = kp is the
wave vector,c is the phase velocity,ω = c · k is the angular velocity andUi is ith component of
the amplitude vector at the point defined by the position vectorx.

For a given wavelengthλ, the wave numberk may be computed from

k =
2π

λ
. (5)

Finally, the group velocitycg is defined as

cg =
dω

dk
. (6)

In non-dispersive systems,c is a constant and sinceω = ck, we getcg = c. Thus, in the absence
of dispersion the group velocity equals the phase velocity. On the other hand,cg 6= c indicates
dispersion.
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3. Finite element formulation

Spatial discretization by the finite element of an elastodynamics problem introduces the
ordinary differential system

Mq̈ + Kq = F. (7)

Here,M is the mass matrix,K the stiffness matrix,F is the time-dependent load vector, the
vectorsq and q̈ contain nodal displacements and accelerations. The mass matrixM and the
stiffness matrixK are defined by

M =

∫
V

ρN
T
N dV, K =

∫
V

B
T
CB dV, (8)

whereρ is the density,V is the volume,N stores the displacement interpolation functions,B de-
notes the strain-displacement matrix andC is the elastic matrix. Under plane strain conditions,
the elastic matrixC takes on the form

C =
E

1− ν2

 1 ν 0
ν 1 0

0 0 1−ν2

2(1+ν)

 . (9)

In the subsequent analysis, a regular meshH × H composed of plane square elements is
considered. It proves useful to define reference matricesM̄e, K̄e for a parent element having
unit propertiesE andρ, unit thicknessb and unit lengthH. Then performing integration over
the reference domain1× 1 one gets

Ke = bEK̄e, Me = bρH2M̄e. (10)

Therefore, a class of problems is defined by only the Poisson ratioν. Within this class, the
stiffness matrixK̄e is a function ofν whereas the mass matrix̄Me is independent ofν.

3.1. Central difference method

The central difference method is based on the approximation of the nodal velocities and
nodal accelerations by relations

q̇t =
1

2∆t

(
qt+∆t − qt−∆t

)
, (11)

q̈t =
1

∆t2
(
qt+∆t − 2qt + qt−∆t

)
, (12)

where∆t denotes time step. The previous kinematic relations (11) and (12) prescribed in time
t are substituted to the equation of motion (7) and the system of linear algebraic equations for
solution of the nodal displacementsqt+∆t is obtained in the form

M/∆t2qt+∆t = Ft −
(
K− 2M/∆t2

)
qt −

(
M/∆t2

)
qt−∆t. (13)

Then, the nodal velocitieṡqt and nodal accelerations̈qt are computed from relations (11)
and (12). Note that using the central difference method is especially effective for the diagonal
mass matrix. In this case the inverse matrixM−1 can be realized simply. More details about the
stability and implementation of the central difference method can be found in [5].
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3.2. Lumped mass algorithms

It is obvious that the diagonal mass matrix entails significant computational savings and
storage advantages. In this section most used techniques that produce diagonally lumped mass
matrices are summarized. The HRZ scheme [6] is an effective diagonal scaling method produc-
ing diagonal mass matrix in such way that the total element mass is preserved. Next approach
uses the different shape functions for the derivation of the mass matrix (8), mostly the piecewise
constant functions [4]. If the same shape functions are chosen identically with shape functions
in the derivation of the stiffness matrix, the mass matrix is called the consistent mass matrix.

Fig. 1. General scheme of the mass distribution for 8-node serendipity square element.

Generally, the mass matrix must satisfy certain conditions: matrix symmetry, physical sym-
metries, conservation and positivity. Therefore, the diagonal components of the lumped mass
matrix must be positive. Furthermore, the masses corresponding to the corner nodes and the
masses corresponding to the midside nodes coincides for the square quadratic finite element
(see Fig. 1). The condition for the keeping of the total element mass of the 8-node serendipity
square finite element takes on the simple form

m = 4m1 + 4m2, (14)

wherem1 denotes the mass of the midside node andm2 is the mass of the corner node. If the
mass corresponding to the midside nodem1 is chosen in the proportion to the total element
massm

m1 = xm, (15)

then for the mass of the corner nodem2 from the condition (14) holds

m2 = (0.25− x)m, (16)

wherex is the mass parameter. The value of the mass parameterx should be chosen in the range
(0, 0.25) requiring the positive definitness of the mass matrix. The valuex = 8/36 corresponds
to the HRZ procedure with2× 2 Gauss quadrature,x = 16/76 the HRZ procedure with3× 3
Gauss quadrature andx = 1/3 to the row sum method. Note that the limit mass distribution
occurs forx = 0 when full mass is inserted in the corner nodes andx = 0.25 when full mass
is concentrated in the midside nodes. Next, the optimal value of mass parameterx will be
determined based on the dispersion analysis.
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4. Spatial time dispersion analysis

Since the finite element mesh is regular and uniform only the characteristic patch shown in
Fig. 2 needs to be considered. Furthermore, one corner node{m, n} and two mid-side nodes
{m+1, n} and{m, n+1} must be taken into account when dealing with the serendipity mesh.
In what follows, a characteristic segment of equations, which repeats itself in an unbounded
mesh, is established. On it, a discrete pattern of harmonic waves is investigated.

Suppose, without loss of generality, that the origin of the coordinate system is located at
node{m,n}. Thus, the nodal coordinates are given for the serendipity mesh

xm+p = pH/2, yn+q = qH/2, p, q = −2,−1, 0, 1, 2 (17)

which is plotted in Fig. 2

Fig. 2. Two dimensional serendipity regular finite element mesh.

The system of differential equation derived for the nodes of the considered patch can be
written as

Mcq̈c + Kcqc = 0 (18)

where the local consistent mass matrixMc and the local stiffness matrixKc are of a rectangu-
lar form 6 × 42 for the serendipity finite element mesh. In the central difference method the
discretized counterpart of (18) can be derived as[

1

∆t2
Mc

]
qt+∆t

c +

[
Kc +

−2

∆t2
Mc

]
qt

c +

[
1

∆t2
Mc

]
qt−∆t

c = 0 (19)

with the aid of the relations (11), (12).
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Next, the dispersion analysis follows when the prescribed nodal harmonic solution in the
form

umn = Umn exp [i (kxmpx + kynpy − s∆tω)]

vmn = Vmn exp [i (kxmpx + kynpy − s∆tω)] (21)

is substituted to the differential equilibrium equations (18). In Eqn. (21)Umn, Vmn define the
shape of deformation mode and the discretized timet is defined ast = s∆t, wheres is the
multiple of the time step∆t. The components of vectorp are expressed by angleθ

px = cos(θ), py = cos(π/2− θ), (22)

where angleθ is defined in Fig. 3.

Fig. 3. Plane wave inclined by angleθ.

The time-harmonic nodal displacements (21) can be expressed in the symbolic form

ut
mn = Umn · µm

x µn
yµ

s
t , vt

mn = Vmn · µm
x µn

yµ
s
t , (23)

µx = exp (iαpx) , µy = exp (iαpy) , µt = exp (iCω̄) , α = kH/2, (24)

where Courant numberC = c1∆t/H and dimensionless angular velocityω̄ = ωH/c1 were
used.

From above equations, the matrix form of the nodal displacementsqt becomes simply by
introducing the nodal amplitude vectorUc

qt = DAUc µm
x µn

yµ
s
t , (25)

where the diagonal matrixD stores from the productµi
xµ

j
y, the matrixA mediates the affiliation

of the characteristic nodal type. Finally, the dispersion relation is derived by (25), (10) and (19)[(
µt − 2 + µ−1

t

)
M̄cDA + C2

0K̄cDA
]
Uc = 0, (26)

whereC0 = c0∆t/H denotes the Courant number andc0 =
√

E/ρ is the speed in a bar.
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For the given wavenumberk, the element sizeH and the angle of the propagation direction
θ, the general eigenvalue problem is obtained in the form(

λ̂M̂ + K̂
)

Uc = 0, (27)

where

K̂ = K̄cDA, M̂ = M̄cDA, λ̂ =
µt − 2 + µ−1

t

C2
0

. (28)

The dispersion relation̄ω = f (kH, θ, C) is then computed from

ω̄ =
1

C
Re (−i ln µ̂t) , (29)

whereµ̂t is given by

µ̂t 1,2 =
λ̂C2

0 + 2

2
±

√
(λ̂C2

0 + 2)2 − 4

2
(30)

using the valuêλ evaluated from (27). Note that only minus sign (30) is sufficient to take into
account.

5. Results

The dispersion curves of the 8-node serendipity finite element for the consistent mass matrix
and the exact time integration were presented in References [10],[11],[8]. Six dispersion curves
ω̄ = f (kH, θ, C) were obtained. The first and the second one are connected with the acous-
tic modes (longitudinal and transversal waves) while additional four ones are linked with the
optical modes [3]. The type of waves is determined from the nodal amplitude valuesUc. For
some frequency ranges the finite element mesh behaves like band-pass filters with discontinuity
between individual frequency bands.

The numerical dispersion error can be measured by the ratioc/cexact andcg/cexact or by the
relative error1 − c/cexact and1 − cg/cexact. Since the dispersion error in the group speeds is
more significant than in the phase speeds the criterion for the measurement of dispersion error
is set to1− cg/c1.

Comparison of dispersion properties of elements for various mass distribution given by
the value of mass parameterx is shown in Fig. 4, where the relative error1 − cg/c1 versus
the normalized wave lengthH/λ is drawn for different Courant numbers and the fixed angle
θ = 0◦. In Fig. 5 the dispersion behaviour of elements for various mass distribution is compared
for different angleθ and the fixed Courant numberC = 0.5. We observe that for the consistent
mass matrix the dispersion error is smaller than 5% for the Courant numberC < 0.8 and the
wavelengthλ > 3H for arbitrary wave propagation. In case of diagonal mass matrix with
the mass parametersx ∈ (0.23, 0.25) the dispersion error is smaller than 10% for the Courant
numberC < 0.8 and the wavelengthλ > 5H for random wave propagation.
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Fig. 4. Dispersion errors in the group speed of the longitudinal wave forθ = 0◦, for the variable mass
distribution and the variable Courant number. (x=0 – full mass is inserted in the corner nodes,x = 1/4
– full mass is in the midside nodes,x = 1/8 – the regular mass distribution,x = 1/3 – the row sum
method,x = 8/36 – the HRZ procedure by 2 order Gauss quadrature,x = 16/76 by 3 order Gauss
quadrature).
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Fig. 5. Dispersion errors for the varied angleθ, the variable mass distribution and Courant number C=0.5.
(x=0 – full mass is inserted in the corner nodes,x = 1/4 – full mass is in the midside nodes,x = 1/8
– the regular mass distribution,x = 1/3 – the row sum method,x = 8/36 – the HRZ procedure by 2
order Gauss quadrature,x = 16/76 by 3 order Gauss quadrature).

6. Conclusion

In this work the dispersive properties of different lumping matrices with variable mass dis-
tribution for the plane square 8-node serendipity elements were investigated. The dispersion
diagrams for such lumping matrices were derived for various Courant numbers and the direc-
tions of wave propagation. It is concluded that the dispersion error is smaller than then10% for
the Courant numberC < 0.8 and the wavelengthλ > 5H for elements whose mass distibution
is more than92% concentrated to the midside node independently on the wave propagation.
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