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Abstract

The paper describes the way how to find the mdtpaemeters of the homogenous isotropic or ortipadtr
2D continuum from measurements of deformation ¢fcted nodes. The FE method is used for recongiruct
of the stiffness matrix. The developed method eembd determine the angle between the material aixtse
continuum and the local coordinate system of theel dements
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1. Introduction

In the paper it is presented the way how to deateaterial characteristics of the 2D ho-
mogenous continuum from the deformation measuremietite defined points. Assured ma-
terial characteristics are used for reconstruatibtihe stiffness matrix of the solved construc-
tion. In the first approximation it is assumed timear theory of elasticity and homogenous
isotropic or orthotropic material description. Téreample for the method demonstration is in
Fig. 1.
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Fig. 1. Solved problem - 2D continuum.
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2. Material description of 2D homogenous continuum
For the linear theory of elasticity the constitetequation can be defined in the form
o=Ce. 1)

where o ,¢ are vectors of stress and strain tensors relatéldetariginal configuration of the
continuum, Cis the matrix of the elastic constants. For thdregmc material it can be as-
sumed in case of planar stress in the form

14 O (2)
E 0 ’

L1500 (1-p)2

where E is modulus of elasticity,is Poisson‘s constant. For the orthotropic malténia ma-
trix of the elastic constants can be found in tenf[2]

Exa Ejuya O 3)
1
Exupa Eya 0 |, a= .
0 0 ny ,nyluyx

Due to the material stability constraints for tlemponents of the matrix of elastic constants
must be fulfilled

E.a>0,Ea>0Eu.0>0Eu,a>0,G,, >0 (4)
i[5
detC) >0
Assuming validity of the expression
Hoy _ Hy ©)
E, E

the matrix of elastic constants for 2D orthotropiaterial model can be reformulated into the
resulting form
(6)

L E2  E,Eu, 0
———|E E E E 0 .
EX —/,/nyy X ytuxy Xy )

0 0 (Ex ~HyE, )ny

For 2D orthotropic material model it is necessaryfihd the four independent material pa-
rameters: & E, are the modulus of elasticity along the matenalsa,y is Poisson‘s constant
and Gy is the shear modulus of elasticity.

3. Deformation characteristics of 2D homogenous continuum

For the description of the deformation charactessof the 2D continuum FEM can be
used. The linear 2D element according to Fig. Zcepted for the plain stress. The orienta-
tion of the material axes is assumed to be paralléhe axes of the local element coordinate
system.
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Fig. 2. 2D element.

From the condition of the deformation energy minimthe stiffness matrix of the finite ele-
ment expressed by components in the local coomlisyatem can be derived [3]

u:lngadv. ()
2y,
The vector of the strain tenspis formulated in the form
0 o (8)
8)()( FW 0 FW
e=|e |= 0x ay | |ulx,y
yy 0 i i vix,y)|’
Co dy ox

where u,v are the deformations along the axeseofdtal coordinate system of the finite ele-
ment. Due to the chosen type of the finite elentieatdeformation field in the element is ex-
pressed by the linear interpolation of the bounderyes deformation

u(x,y)|_[1 x y xy 00 0 0], 9)
viX,y 000 O 1 x vy xy ’

whereV is the vector of the deformation of the boundarglex
V:[ui Vioupovoue vy V,J. (10)

The matrixA describes the position of the boundary nodesendbal coordinate system of
the element

1 -05a -050 025ab 0 O 0 0 (11)
0 O 0 0 1 -05a —-05b 0.25ab
1 05a -05b -025ab 0 O 0 0
A=|0 O 0 0 1 05a -05b —0.25ab
1 052 05b 02%b 0 O 0 0
0 O 0 0 1 05a 05b 0.25ab
1 -05a 05b -025ab 0 O 0 0
0 O 0 0 1 -05a 0.5b -0.25ab

Substituting (9) - (12) to (8) it can be derivea txpression for deformation energy of the
element expressed by deformation of the boundadg$io
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1

U=_vTATf (®"Co)dxdya v t. (12)

where t is the thickness of the solved 2D continwand

010yO0000 (13)
®={000 0001 x|.

001x010y

The stiffness matrix of the finite element, expeessn the local coordinate system, can be
formulated

U U U U U U oUW | (14)
ouody; duov, 0udu; dudv; duou, OJuodv, 0udy duoV,
IOCK:
oV
sym

ov,0v,

It is apparent that the stiffness matrix is a funtof the independent material parameters
IocK = IocK (Ex , Ey uuxy ’ny). (15)
The stiffness matrix is created by 10 independemtiinear functions. For example the ex-
pression for the functionié
1 EXb*+G, a°E, -G, a’ 1 E, (16)

h= 3 .- 12 E, b

4. Reconstruction of material parametersof 2D homogenous continuum

For the reconstruction of the material parametéthe@2D continuum the deformations of
the nodes of the patch created by finite elemertdsrding to Fig. 3 are measured.

Fig. 3. Measured nodes.

The orientation of the patch is assumed to be albeglirection of the material axes. Two
loading cases are considered. The vectors of therrdations W and U, of the patch are
measured for the loading by the forgeaRd F. The values of the deformation &hd U are a
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function of the stiffness of the patch and stifm@sd boundary conditions of the rest of the
construction.

Fig. 4. Computational model.

The stiffness of the construction outside the p#&dh the computational model involved
by the external springs of unknown stiffness camistéFig. 4). The external spring elements
influence the stiffness matrix of the patch in giasition of the main diagonal. The equilib-
rium equations of the computational model in Figué

(K(E,. By 1y.Gy) +|dimgk, U, = F, (17)
(K (B E, 144G, ) +[diagli, JJu, = F,
The equations (17) can be written in the symbdronf
f(E,,E, 1y .Gy Ky .k, )=0. (18)

The term (18) is composed from 36 nonlinear equatifor 36 unknown parameters;, [,
Hxy, Gy, and 16 spring constarktg and 16 spring constarits for the first and second loading
cases. The modified Newton’s method was used foimgp(18)

Xy !

_ o (29)
A'x = —(ﬂj f(' x)
d X .
41y DXi+<(AiX
whereA'x is
iy — 20
Ax = [AE, AE, A, AG, AKT AKT (20)
of . : : L
x is the matrix of the partial derivatives
X
(21)

0K, 0K, 0K, oK
Jac_[afj: OE, * OE, * ou, * G, |

Ky, Ky, Ky, Ky o dag,)
oE, ' o, ’ G

Xy

U, diaglu,) ©

oE

X

and f(x) is
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K\'E(, E,, K4, G, )*|diag\ k, JJU,—F,
The parametet is chosen due to the validity of the expressi@) (2
| <1. (23)

The iteration is not too sensitive for the initi@lues and the speed of the convergence is
apparent from Fig. 5.

T
3| =—real values
V| == zerovalues

sqrt(sum(del.2))

MNorma:

J
a 10 12
lterations

Fig. 5. Speed of iteration, real initial valuesarig zero initial values.

The accuracy of the computed material parametguerats on the position of the meas-
ured points. Due to the numerical stability it igtable to measure the deformation of the
nodes in the position that is not too influencedhms/boundary conditions.
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E=|

Patch3

Patch5

\

=S|

Patch2

™ Patch.
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Fig. 6. Tested patches.
The results of the numerical simulations are obwifvsam the next table Tab. 1, where the
deviations of the computed material parameter ftoennominal values are presented. In the

patch 5 the calculation fails due to the numerigsiability and the material parameters have
not been found.
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Patch AEX [%] AEYy [%] AGXxy [%] Apxy [%]
1 -0.8241 -1.0175 2.2067 0.9495
2 0.0013 -0.0032 -0.1123 0.1036
3 -0.0737 -0.0042 -0.0162 -0.0528
4 0.0111 0.0103 0.0950 -0.4888

Tab. 1. Computed material characteristics.

5. Orientation of material axes

In the case that the material axes are rotatetheffocal coordinate system then the stiff-
ness matrix is the function not only of the mategp@rameters but also of the angle of the ro-

tation. It is necessary to transform the matrixhaf elastic constants (6) to the rotated coordi-
nate system

C, C, Cy C2¢ 32¢ - Xsp c, ¢, O CZ¢ sz¢ -csp o (24)

C, Cyp Cyp|= sp c¢ Zsp C, Cp O s ¢ csp
Cs Cp Gy csp -csp c’p-sp|| O O cyljcsp -csp c’p-s@

The expression (24) follows from the transformatadrthe tensors [1]. For the abbreviation

of the notation @=co<(¢), Lh=sin($), cxh= cosp)sin@) was used. From the expression
(24) the modified members of the matrix of the #tasonstants can be derived

G =0 + 20, + 20, )c°p % + 8" (25)
= (Gt = de )P Sp+ i + ')
2 =CiS'P+ 2(C12 + 2033)02¢ s’p+c,C'o
3~ (011 —Cpp~ 2033)03¢ Sp + (Clz —Cpt 2033)C¢ s’p .
23 = (011 ~Cp~ 2033)C¢ 53¢ + (C.I.Z —Cpt 2033)03¢ s¢
Cy3 = (Cll +C,y —2C), — 2033)C2¢ 52¢ + C33(S4¢ + C4¢)
According to the method presented in the parag8iplsan be derived the stiffness matrix
loc = loce (Ex E, ”qu,ny,¢)_ (26)

o 0o o Ol

This matrix is created by the 20 independent nesalirfunctions, where e.g. the functiamsf
_ 1 (27)
fl= ) —_—
6ad— E, + ,quEy)
(2ct?sf2(a?(- E2 + 2E,E, 1, - E,E, +4GE, -2GE, )+ 2b°(- 2GE, + 2G12 E, -E,E, 11, )
+ ZCf“(-aZGEX +a’GuyE, - b2E§)+ 2‘sf“(-a2GEX -b’E,E, + aZG,unyy)
+3cfsf*(- 2GE, + 2612 E, - E,E, 1, +E,E, Joa
+3cf%sf(E, E, 11, +2GE, -2G42 E, - E?)bal)
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The material parameters for the separate angldseaftation of the material axes due to
the local coordinate system can be computed. Exdutthe solutions that do not satisfy the
conditions (4), the angle of rotation of the matkaixes can be derived.
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Fig. 7. Computed values of, Efor the angle of material axes rotation df=0/df=10.

From Fig. 7 it is apparent that the values of tamdnded material parameters for the cor-
rect orientation of the material axes are extremal.

6. Conclusion

In the paper it is presented the method how to tivedmaterial parameters of the isotropic
or orthotropic homogenous 2D continuum from theod®eftion of the nodes within the as-
sumption of the validity of the linear theory oésticity.
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